用musescore做吉他弹唱谱

0.

该篇用于记录使用musescore打谱,该篇目标是完成 林俊杰版的心墙

1 新建谱子文件

文件-》新建-》输入标题-》独奏-》吉他-》

1.1调号

暂时不懂,默认下一步

1.2拍号

选择4/4

1.3速度记号

选择80

2 界面设置

该篇用于吉他弹唱,弹唱谱需要和弦图,简谱(可能不必要)

2.1启动高级界面(激活和弦图)

在界面右上角有个“基础”按钮,换成“高级”
更换后,左侧“符号面板”中增加了一个“品格图”,这就是和弦图

2.2 和弦图修改

2.3 初试6线谱输入

1.点击 键盘中的“n” 进入输入状态
2.点击小键盘的数字键可以切换音符
3.点击主键盘的数字键可以输入吉他品位
4.用方向键切换吉他弦
5.吉他六线谱中的“X”叫鬼头符 (cross notes,或ghost note),先随便输入音符,再选中该音符按 shift+X转化为x
6.改变速度,左侧工具栏有速度,或者修改速度的数字就可以

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值