摘自:http://blog.sina.com.cn/s/blog_4fdb102b010087ng.html
一.高精度数的存储
1.如对数采用的字符串输入
#include <iostream>
#include <cstring>
using namespace std;
const int N = 100;//最多100位
int main()
{
int a[N + 1], i;
string s1;
cin >> s1;//数s1
memset(a, 0, sizeof(a)); //数组清0
a[0] = s1.length(); //位数
for (i = 1; i <= a[0]; i++) a[i] = s1[a[0] - i] - '0';//将字符转为数字并倒序存储.
return 0;
}
2.直接读入
#include <iostream>
using namespace std;
const int N = 100;//最多100位
int main()
{
int a[N + 1], i, s, key;
cin >> key;//数key
memset(a, 0, sizeof(a)); //数组清0
i = 0;//第0位
while (key) //当key大于0
{
a[++i] = key % 10;//取第i位的数
key = key / 10;
}
a[0] = i; //共i位数
return 0;
}
3.直接初始化(用a[]存储)
初始化为0: memset(a, 0, sizeof(a));
初始化为1: memset(a, 0, sizeof(a)); a[0] = 1; a[1] = 1;
二.高精度数比较
int compare(int a[], int b[]) //比较a和b的大小关系,若a>b则为1,a<b则为-1,a=b则为0
{
int i;
if (a[0]>b[0]) return 1;//a的位数大于b则a比b大
if (a[0]<b[0]) return -1;//a的位数小于b则a比b小
for (i = a[0]; i>0; i--) //从高位到低位比较
{
if (a[i]>b[i]) return 1;
if (a[i]<b[i]) return -1;
}
return 0;//各位都相等则两数相等。
}
三、高精度加法
int plus(int a[], int b[]) //计算a=a+b
{
int i, k;
k = a[0]>b[0] ? a[0] : b[0]; //k是a和b中位数最大的一个的位数
for (i = 1; i <= k; i++)
{
a[i + 1] += (a[i] + b[i]) / 10; //若有进位,则先进位
a[i] = (a[i] + b[i]) % 10;
} //计算当前位数字,注意:这条语句与上一条不能交换。
if (a[k + 1]>0) a[0] = k + 1; //修正新的a的位数(a+b最多只能的一个进位)
else a[0] = k;
return 0;
}
四、高精度乘法1(高精度乘单精度数,单精度数是指通常的整型数)
int multi1(int a[], long key) //a=a*key,key是单精度数
{
int i, k;
if (key == 0) { memset(a, 0, sizeof(a)); a[0] = 1; return 0; } //单独处理key=0
for (i = 1; i <= a[0]; i++)a[i] = a[i] * key;//先每位乘起来
for (i = 1; i <= a[0]; i++) { a[i + 1] += a[i] / 10; a[i] %= 10; } //进位
//注意上一语句退出时i=a[0]+1
while (a[i]>0) { a[i + 1] = a[i] / 10; a[i] = a[i] % 10; i++; a[0]++]; }
//继续处理超过原a[0]位数的进位,修正a的位数
return 0;
}
五、高精度减法
int gminus(int a[], int b[]);//计算a=a-b,返加符号位0:正数 1:负数
{ int flag, i
flag = compare(a, b); //调用比较函数判断大小
if (falg == 0)//相等
{
memset(a, 0, sizeof(a)); return 0;
} //若a=b,则a=0,也可在return前加一句a[0]=1,表示是 1位数0
if (flag == 1) //大于
{
for (i = 1; i <= a[0]; i++)
{
if (a[i]<b[i]) { a[i + 1]--; a[i] += 10; } //若不够减则向上借一位
a[i] = a[i] - b[i];
}
while (a[a[0]] == 0) a[0]--; //修正a的位数
return 0;
}
if (flag == -1)//小于 则用a=b-a,返回-1
{
for (i = 1; i <= b[0]; i++) {
if (b[i]<a[i]) { b[i + 1]--; b[i] += 10; } //若不够减则向上借一位
a[i] = b[i] - a[i];
}
a[0] = b[0];
while (a[a[0]] == 0) a[0]--; //修正a的位数
return -1;
}