三支冲突分析介绍

本文介绍了Pawlak的冲突分析模型,如何通过决策矩阵的二元关系形式表示对象对属性的态度,并详细解释了姚一豫教授的改写版本,包括支持集、反对集和中立集的划分,以及基于这些概念的二元关系和距离运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pawlak最早通过观察一组智能体对一组问题的意见,提出了冲突分析模型。U表示对象集,V表示属性集,R表示对象集和属性集之间的二元关系,这样一个刻画冲突分析的信息系统通过三元组(U,V,R)表示,其中,每个对象对属性的态度记为R(x,a)。实质上就是决策矩阵的二关关系形式表达。

Pawlak冲突分析模型中,R(x,a)取值为1,-1和0,分别代表支持反对和中立,\phi_a(x,y)表示对象x和y对属性a的一致性,取值范围也是1,-1和0,分别代表两者对属性a持一致态度,两者对属性a持相反态度,以及两者对属性a具有不同态度。然后定义了对象x和y之间的距离,表示x和y对所有属性计算态度一致性的算术平均,实质上就是决策矩阵中两行算距离。最后通过0.5阈值判断结果x和y是否冲突。

例子1

这张表就是Pawlak论文使用的示例,通过情况表很容易看出,针对i1这个属性,a2、a3和a5支持,a1反对,a4和a6中立。

姚一豫教授重新改写了冲突分析模型的定义,给出了三支冲突分析的定义如下。

定义 在一个情况表中,对于所有的属性i,对象集可以划分为以下三个部分:A_i^-={x\in A|r(x,i)=-1}, A_i^0={x\in A|r(x,i)=0}, A_i^+={x\in A|r(x,i)=1},

分别代表属性的支持集,反对集和中立集。

例子2 重新分析例子1的表,那么可以得到关于属性i1的支持集,反对集和中立集A_{i_1}^-=\{a_1\},A_{i_1}^0=\{a_4,a_6\},A_{i_1}^+=\{a_2,a_3,a_5\}

进一步的,我们考虑属性的笛卡尔积形式。

定义 基于两个对象的评价,可以定义三种二元关系来描述他们的关系:

R_i^=={(x,y)\in A \times A|(r(x,i)-r(y,i)/2=0)}

R_i^\approx ={(x,y)\in A \times A|(r(x,i)-r(y,i)/2=0.5)}

R_i^\asymp ={(x,y)\in A \times A|(r(x,i)-r(y,i)/2=-1)}

其中,定义了一种距离运算d(a,b)=0.5|a-b|,||就是绝对值运算。这样我们就能很容易的算出所有的二元关系的结果如下表所示,比如]-1-(-1)|=0,以此类推。

关系R_i^=描述了两个对象对属性的评价是一致或相等的,并且实质上是一个等价关系。关系R_i^\approx描述了必须有且只有一个对象的评价是0,另一个对象评价是1或-1的情况,实质上是一个相容关系。关系R_i^\asymp描述了两个对象对属性是完全不同的正负对立的评价。

上表可以转换成如下等式来描述,比如R_i^=关系就包括了负负、00和正正三种情况,以此类推。

以上就是三支冲突分析的所有概念部分的介绍,具体细节请参考文献:Three-way conflict analysis: Reformulations and extensions of the Pawlak model。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值