域偏移下的小样本学习:用于瞬态转速变化下故障诊断的时间序列注意力对比校准Transformer

本文介绍了一种针对瞬变工况下小样本故障诊断的创新方法,即注意力对比校准Transformer(ACCT)。通过Transformer处理时间序列数据,捕捉低级特征并建立全局依赖,同时利用数据增强和无监督对比学习提升模型泛化。实验结果显示,ACCT在不同瞬态工况下表现出色,优于其他Transformer变种,展示了在工程场景中的实用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 写在前面

本文是对智能故障诊断领域文章 Few-shot learning under domain shift: Attentional contrastive calibrated transformer of time series for fault diagnosis under sharp speed variation 的解读与推荐。

关键词:故障诊断,瞬变工况,Transformer,小样本学习

文献信息

S. Liu, J. Chen, S. He, Z. Shi, and Z. Zhou, “Few-shot learning under domain shift: Attentional contrastive calibrated transformer of time series for fault diagnosis under sharp speed variation,” Mech. Syst. Sig. Process., vol. 189, p. 110071, Apr. 2023, doi: 10.1016/j.ymssp.2022.110071.

亮点与贡献

(1)探究了Transformer(编码模块)架构更多的工程应用可能性:在不考虑跨域解缠的情况下,提出了一种适用于小样本域偏移故障诊断的时间序列Transformer。我们强调,所提出的方法简单地配备了一般的技巧,但即使在瞬态转速变化下,很少的训练样本也产生出色的故障诊断性能。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值