持续学习&持续更新中…
守破离
【黑马-SpringCloud技术栈】【10】Sentinel
初识Sentinel
雪崩问题及解决方案
雪崩问题
- 微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩。
- PS:一个请求得不到响应被会阻塞,就会消耗Tomcat的一个连接(这时Tomcat并不会释放连接)
解决雪崩问题的常见方式有四种:
-
超时处理
:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待- 存在的问题:这样做只能“缓解”而并不能从根本上解决雪崩问题。思考这样一种情况:每等待1秒释放一个连接,但是每1秒却进入2个及以上的连接,久而久之,总还会有雪崩的那一天。
-
舱壁模式
:限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离
。
-
熔断降级
:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。
-
流量控制
:限制业务访问的QPS(Queries-per-second:每秒查询率),避免服务因流量的突增而故障。- PS:流量控制是一种预防机制,其它三种是一种处理机制。但是我们却并不能只预防问题而不做问题发生的处理,因为高并发的请求只是引起服务故障的原因之一,网络问题、假死问题、内存泄漏等等都会导致某个服务出现故障,因此并不能只对服务的雪崩问题只预防不处理
总结
- 如何避免因瞬间高并发流量而导致服务故障?
- 流量控制【预防】
- 如何避免因服务故障引起的雪崩问题?
- 超时处理【处理】
- 线程隔离【处理】
- 降级熔断【处理】
服务保护技术对比
Sentinel介绍和安装
认识Sentinel
-
Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.html
-
Sentinel 具有以下特征:
- 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
- 完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
- 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
- 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。
安装Sentinel控制台
-
sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。课前资料提供了下载好的jar包:
-
将其拷贝到一个你能记住的非中文目录,然后运行命令:
-
然后访问:
localhost:8080
即可看到控制台页面,默认的账户和密码都是sentinel -
如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:
-
举例:
微服务整合Sentinel
-
要使用Sentinel肯定要结合微服务,这里我们使用SpringCloud实用篇中的cloud-demo工程。
-
项目结构如下:注册和配置中心使用的是Nacos
-
我们在order-service中整合Sentinel,并且连接Sentinel的控制台,步骤如下:
-
引入Sentinel依赖:
<dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId> </dependency>
-
配置控制台地址:
spring: application: name: orderservice # 服务名称 cloud: nacos: server-addr: localhost:8848 # Nacos地址 sentinel: transport: dashboard: localhost:8080
-
访问微服务的任意端点,触发sentinel监控
http://localhost:10010/order/101
-
-
注意
- 一定要访问资源后,才能在Sentinel的控制台查看到簇点链路信息。
流量控制(限流规则)
快速入门
簇点链路
- 簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源。
- 默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源
- PS:Endpoint可以理解为Controller下的RequestMapping方法。其它方法也可以作为Endpoint,但是需要额外的注解
- 流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:
快速入门
-
点击资源
/order/{orderId}
后面的流控按钮,就可以弹出表单。表单中可以添加流控规则,如下图所示:
-
其含义是限制
/order/{orderId}
这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。
流控规则入门案例
流控模式
在添加限流规则时,点击高级选项,可以选择三种流控模式:
- 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
- 关联:统计与当前资源相关的另一个资源,当它触发阈值时,对当前资源限流
- 链路:统计从指定链路访问到本资源的请求,当它触发阈值时,对指定链路限流(就对它限流),而不是对当前资源限流
关联
-
关联模式:统计与当前资源相关的另一个资源,当它触发阈值时,对当前资源限流
-
使用场景:比如用户支付时需要修改订单状态,同时也要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付后更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流,防止它消耗资源影响更新订单业务。
-
举例:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。
-
案例:
- 在OrderController新建两个端点:/order/query和/order/update,无需实现业务
- 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流
-
满足下面条件可以使用关联模式:
- 两个有竞争关系的资源
- 一个优先级较高,一个优先级较低
- 我们希望当优先级较高的资源触发阈值时对优先级较低的那个资源进行限流
链路
-
链路模式:统计从指定链路访问到本资源的请求,当它触发阈值时,对指定链路限流(就对它限流),而不是对当前资源限流
-
例如有两条请求链路:
- /test1 —> /common
- /test2 —> /common
-
如果只希望统计请求来源,比如统计从/test2进入到/common的请求,则可以这样配置:
-
案例:
-
案例需求:有查询订单和创建订单业务,两者都需要查询商品。(查订单—>查商品;创订单—>查商品)
- 我们知道,查询订单肯定并发高,但是查询商品一定会有并发上限,而且当查询订单并发高到一定程度也会影响到创建订单的业务。
- 所以针对从查询订单进入到查询商品的请求统计,并对其设置限流。
-
案例步骤:
- 在OrderService中添加一个queryGoods方法,不用实现业务
- 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
- 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
- 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2
-
案例实现:
-
Sentinel默认只标记Controller中的方法为资源,如果要标记其它方法,需要利用@SentinelResource注解,示例:
@SentinelResource("goods") public void queryGoods() { System.err.println("查询商品成功!"); }
-
两个入口(来源)端点:
@GetMapping("/query") public String queryOrder() { orderService.queryGoods(); return "查询订单成功!"; } @GetMapping("/save") public String saveOrder() { orderService.queryGoods(); return "创建订单成功!"; }
-
Sentinel默认会将Controller方法做context整合,导致链路模式的流控失效,需要修改application.yml,添加配置:
spring: cloud: sentinel: transport: dashboard: localhost:8080 web-context-unify: false
-
Sentinel控制台配置:
-
jmeter测试:
-
-
总结:流控模式有哪些?
- 直接:对当前资源限流
- 关联:高优先级资源触发阈值,对低优先级资源限流。
- 链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流
流控效果
流控效果是指请求达到流控阈值时应该采取的措施,包括三种:
- 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
- warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
- 排队等待:让所有的请求按照先后次序排队执行(会给请求设置一个超时时间,如果该请求在队列中等待时间超时了,那么该请求就会被拒绝,抛出异常)。两个请求的间隔不能小于阈值允许的时间间隔
warm up
-
warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 threshold / coldFactor,持续指定时长后,逐渐提高到threshold值。而coldFactor的默认值是3.【threshold:最大阈值】【coldFactor:冷启动因子】
-
例如,我设置QPS的threshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.
-
需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒
-
通过jmeter或者Sentinel的实时监控我们可以发现,资源的阈值在5秒后逐渐升高至最大阈值10。
排队等待
-
当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。
-
例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待超过2000ms的请求会被拒绝并抛出异常
-
需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s
-
总结:流控效果有哪些?
- 快速失败:QPS超过阈值时,拒绝新的请求
- warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。
- 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝
热点参数限流
-
之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。
-
配置示例:代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5
-
在热点参数限流的高级选项中,可以对部分参数设置例外配置:
-
案例:给/order/{orderId}这个资源添加热点参数限流,规则如下:
- 默认的热点参数规则是每1秒请求量不超过2
- 给102这个参数设置例外:每1秒请求量不超过4
- 给103这个参数设置例外:每1秒请求量不超过10
-
注意:热点参数限流对默认的SpringMVC资源无效,必须加上@SentinelResource注解
-
jmeter测试:
隔离和降级
- 虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。
- 不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。
Feign整合Sentinel
-
SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。
-
修改SpringCloud的版本号:
-
修改OrderService的application.yml文件,开启feign对sentinel的支持:
feign: sentinel: enabled: true
-
给FeignClient编写失败后的降级逻辑,在feing-api项目中定义:
- 方式一:FallbackClass,无法对远程调用的异常做处理
- 方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种
import feign.hystrix.FallbackFactory; public class UserClientFallbackFactory implements FallbackFactory<UserClient> { @Override public UserClient create(Throwable cause) { // 创建UserClient接口实现类,实现其中的方法,编写失败降级的处理逻辑 return new UserClient() { @Override public User findById(Long id) { System.err.println("查询用户失败"); // 根据业务需求返回默认的数据,这里返回的是空用户 return new User(); } }; } }
-
在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:
public class DefaultFeignConfiguration { @Bean public UserClientFallbackFactory userClientFallbackFactory() { return new UserClientFallbackFactory(); } }
-
在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:
@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class) //@FeignClient(value = "userservice") public interface UserClient { @GetMapping("/user/{id}") User findById(@PathVariable("id") Long id); }
-
在OrderService中使用DefaultFeignConfiguration配置类:
@MapperScan("cn.itcast.order.mapper") @SpringBootApplication @EnableFeignClients(clients = UserClient.class, defaultConfiguration = DefaultFeignConfiguration.class) //@EnableFeignClients(clients = UserClient.class) public class OrderApplication { public static void main(String[] args) { SpringApplication.run(OrderApplication.class, args); } }
-
访问一个资源后:(比如:http://localhost:10010/order/101)
线程隔离(舱壁模式)
线程隔离有两种方式实现:
- 线程池隔离
- 信号量隔离(Sentinel默认采用)
它俩各自的优缺点:
如何使用?
-
在添加限流规则时,可以选择两种阈值类型:
-
QPS:就是每秒的请求数,在快速入门中已经演示过
-
线程数:是该资源能使用的tomcat线程数的最大值。也就是通过限制线程数量,实现舱壁模式。(别看这儿写的是“线程数”,其实Sentinel内部是使用“信号量”实现的)
案例演示:
-
需求:给 UserClient的查询用户接口设置流控规则,线程数不能超过 2。然后利用jemeter测试。
-
Sentinel配置:
-
一次发出10个请求,有较大概率并发线程数超过2,而超出的请求会走之前定义的失败降级逻辑。最后发现虽然结果都是通过了,不过部分请求得到的响应是降级返回的null信息。
总结:
- 线程隔离的两种手段是?
- 信号量隔离
- 线程池隔离
- 信号量隔离的特点是?
- 基于计数器模式,简单,开销小
- 线程池隔离的特点是?
- 基于线程池模式,有额外开销,但隔离控制更强
熔断降级
- 熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。
- 断路器不仅能熔断,还能恢复服务。
-
断路器熔断策略有三种:慢调用、异常比例、异常数
-
小总结:
- 状态机包括三个状态:
- closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
- open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
- half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
- 请求成功:则切换到closed状态
- 请求失败:则切换到open状态
- 状态机包括三个状态:
熔断策略—慢调用
-
慢调用:业务的响应时长(RT:Response Time)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。例如:
-
上图解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5(50%),则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。
-
案例:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s
-
为了触发慢调用规则,我们需要修改UserService中的业务,增加业务耗时:
@RestController @RequestMapping("/user") public class UserController { @GetMapping("/{id}") public User queryById(@PathVariable("id") Long id) throws InterruptedException { if (id == 1) { TimeUnit.MILLISECONDS.sleep(60); } return userService.queryById(id); } }
-
测试:使用这两个请求进行测试,在浏览器快速访问:
http://localhost:8888/order/101
、http://localhost:8888/order/102
熔断策略—异常比例、异常数
-
异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。例如:
-
上图解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4(40%),则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。
-
案例:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s
-
为了触发异常统计,我们需要修改UserService中的业务,抛出异常:
@RestController @RequestMapping("/user") public class UserController { @GetMapping("/{id}") public User queryById(@PathVariable("id") Long id) throws Exception { if (id == 1) { throw new RuntimeException("出现异常啦!"); } return userService.queryById(id); } }
小结
- Sentinel熔断降级的策略有哪些?
- 慢调用比例:超过指定时长的调用为慢调用,统计单位时长内慢调用的比例,超过阈值则熔断
- 异常比例:统计单位时长内异常调用的比例,超过阈值则熔断
- 异常数:统计单位时长内异常调用的次数,超过阈值则熔断
授权规则
授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。
- 白名单:来源(origin)在白名单内的调用者允许访问
- 黑名单:来源(origin)在黑名单内的调用者不允许访问
为什么需要Sentinel的授权规则?
-
如果请求都是从网关路由过来的还好,这时候网关可以对请求做身份的认证,但是万一有人直接调用某个微服务的地址而不走网关呢?如果有人绕过网关的话,那么网关做的一系列安全校验就没用了。
-
所以Sentinel的这个授权规则还是很有用的。它可以对请求者的身份做判断,看他有没有权限访问我。
案例:我们限定只允许从网关来的请求访问order-service
-
默认情况下,origin都是default,因此需要自己实现解析器。而Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。
-
我们尝试从request中获取一个名为origin的请求头,作为origin的值:
@Component public class HeaderRequestOriginParser implements RequestOriginParser { @Override public String parseOrigin(HttpServletRequest httpServletRequest) { String origin = httpServletRequest.getHeader("origin"); if (StringUtils.isEmpty(origin)) { return "blank"; } return origin; } }
-
我们还需要在gateway服务中,利用网关的过滤器添加名为gateway的origin头:
-
给/order/{orderId} 配置授权规则:
-
我们可以发现走网关的可以正常访问,而直接访问orderservice的则会出现异常信息:
自定义异常结果
-
默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:
-
而BlockException包含很多个子类,分别对应不同的场景:
-
我们在order-service中定义类,实现BlockExceptionHandler接口:
@Component public class SentinelBlockHandler implements BlockExceptionHandler { @Override public void handle( HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse, BlockException e) throws Exception { String msg = "未知异常"; int status = 429; if (e instanceof FlowException) { msg = "请求被限流了!"; } else if (e instanceof DegradeException) { msg = "请求被降级了!"; } else if (e instanceof ParamFlowException) { msg = "热点参数限流!"; } else if (e instanceof AuthorityException) { msg = "请求没有权限!"; status = 401; } httpServletResponse.setContentType("application/json;charset=utf-8"); httpServletResponse.setStatus(status); httpServletResponse.getWriter().println("{\"message\": \"" + msg + "\", \"status\": " + status + "}"); } }
-
我们配置相应的授权、限流规则后,看看效果:
规则持久化
规则持久化模式
-
Sentinel的控制台规则管理有三种模式:
-
原始模式:控制台配置的规则直接推送到Sentinel客户端,也就是我们的应用。然后保存在内存中,服务重启则丢失
- pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。
- push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。
实现push模式
修改order-service服务
-
修改OrderService,让其监听Nacos中的sentinel规则配置。
-
具体步骤如下:
1.引入依赖
-
在order-service中引入sentinel监听nacos的依赖:
<dependency> <groupId>com.alibaba.csp</groupId> <artifactId>sentinel-datasource-nacos</artifactId> </dependency>
2.配置nacos地址
-
在order-service中的application.yml文件配置nacos地址及监听的配置信息:
spring: cloud: sentinel: datasource: flow: nacos: server-addr: localhost:8848 # nacos地址 dataId: orderservice-flow-rules groupId: SENTINEL_GROUP rule-type: flow # 还可以是:degrade、authority、param-flow
-
如果要配置降级规则可以这样:
spring: application: name: orderservice cloud: nacos: server-addr: localhost:8848 # nacos服务地址 sentinel: transport: dashboard: localhost:8080 # sentinel控制台地址 web-context-unify: false # 关闭context整合 datasource: flow: nacos: server-addr: localhost:8848 # nacos地址 dataId: orderservice-flow-rules groupId: SENTINEL_GROUP rule-type: flow # 还可以是:degrade、authority、param-flow degrade: nacos: server-addr: localhost:8848 # nacos地址 dataId: orderservice-degrade-rules groupId: SENTINEL_GROUP rule-type: degrade # 还可以是:flow、authority、param-flow
修改sentinel-dashboard源码
- SentinelDashboard默认不支持nacos的持久化,需要修改源码。
1. 解压
-
https://github.com/alibaba/Sentinel/releases/tag/1.8.1
下载源码包
-
解压sentinel源码包
Sentinel-1.8.1.zip
-
然后用IDEA打开这个项目,结构如下:
2. 修改nacos依赖
-
在sentinel-dashboard源码的pom文件中,nacos的依赖默认的scope是test,只能在测试时使用,这里要去除:
-
将sentinel-datasource-nacos依赖的scope去掉:
<dependency> <groupId>com.alibaba.csp</groupId> <artifactId>sentinel-datasource-nacos</artifactId> </dependency>
3. 添加nacos支持
- 在sentinel-dashboard的test包下,已经编写了对nacos的支持,我们需要将其拷贝到main下。
4. 修改nacos地址
- 然后,还需要修改测试代码中的NacosConfig类:
-
修改其中的nacos地址,让其读取application.properties中的配置:
-
在sentinel-dashboard的application.properties中添加nacos地址配置:
nacos.addr=localhost:8848
5. 配置nacos数据源
-
另外,还需要修改com.alibaba.csp.sentinel.dashboard.controller.v2包下的FlowControllerV2类:
-
让我们添加的Nacos数据源生效:
6. 修改前端页面
-
接下来,还要修改前端页面,添加一个支持nacos的菜单。
-
修改src/main/webapp/resources/app/scripts/directives/sidebar/目录下的sidebar.html文件:
-
将其中的这部分注释打开:
-
修改其中的文本:
7. 重新编译、打包项目
- 运行IDEA中的maven插件,编译和打包修改好的Sentinel-Dashboard:
8.启动
-
启动方式跟官方一样:
java -jar sentinel-dashboard.jar
-
如果要修改nacos地址,需要添加参数:
java -jar -Dnacos.addr=localhost:8848 sentinel-dashboard.jar
参考
黑马程序员:SpringCloud微服务技术栈.
本文完,感谢您的关注支持!