-
问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。
它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。
下面给出了杨辉三角形的前4行:
1
1 1
1 2 1
1 3 3 1
给出n,输出它的前n行。
输入格式
输入包含一个数n。
输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。
/*
前提条件:为了简化思考先用下标从1开始考虑
例:a11代表第一行第一列的元素
每个元素为该元素上行与该元素上一行前一列之和
在此题我机智的(对就是机智夸夸自己)的想出一个巧妙的方法就是假想多一行多一列来存取0
元素,这样就可以用相同的代码进行操作,见图:
假想的第一列
第一行: 1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 2 1 0
0 1 3 3 1
例:a11=a00+a01;a22=a12+a11;a23=a13+a12 以此类推aij=a(i-1)j+a(i-1)(j-1)
还有一点就是二维数组本身还是一维数组所以可以用memset用法和一维一样
*/
#include<stdio.h>
#include<string.h>
int main()
{
int n;
while(~scanf("%d",&n)){
int a[35][35];
memset(a,0,sizeof(a));
a[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
{
a[i][j]=a[i-1][j]+a[i-1][j-1];//推到公式
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
printf("%d ",a[i][j]);
}
printf("\n");
}
}
return 0;
}