- 二叉搜索树也叫二叉排序树,左子树的值都比根节点的值小,右子树的值都比根节点的大,而且左子树、右子树也都是二叉搜索树。其中序遍历是从小到大的排列。
想到了卡塔兰数,参考链接【数学思维与文化漫谈】卡塔兰数——组合数学的重要内容&中小学数学竞赛的重要考点
from math import *
class Solution:
def numTrees(self, n: int) -> int: # 用公式3直接出结果
return factorial(2*n) // (factorial(n)* factorial(n) * (n+1))
可参考官方解析
class Solution:
def numTrees(self, n: int) -> int: # 公式1的动态规划
dp = [0] * (n+1)
dp[0], dp[1] = 1, 1 # 初始状态dp[i]指的是n=i时二叉搜索树的不同种数
for i in range(2, n+1):
for j in range(1, i+1): # 对【1,2...i】的每一个j都分别作为根节点,左子树结点个数是j-1个,右子树节点个数是i-j个,而左右子树都是二叉搜索树,确定个数就能确定二叉搜索树的不同种数。
dp[i] += dp[j-1] * dp[i-j]
return dp[n]