题意:有n两车,起点s终点t,t时间发车并达到。现在又m个人,每一个人想从l到r时间为t,问他能搭乘的最近一班汽车。
抽象出来的问题为,解决,A<=A’,B’<=B,T’<=T的问题。
我们离线处理。先按照l即车的起点和人的起点排序,得到在每一个人查询前,已经插入进去了车子且保证车子起点比人靠前。
我们继续建立时间线段树(先离散化了时间),在每一个时间轴上,建立一个右端点,表示这个时间所能达到的最远站。每一次对人查询的时候,就在线段树上二分,优先进入左子树,保证t考前,查询是否能满足右端点>=。
(离散化写错了,unique居然能写错re了几次都没看见!!!)
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<stack>
#include<vector>
#include<queue>
#include<set>
#include<map>
//#include<regex>
#include<cstdio>
#define up(i,a,b) for(int i=a;i<b;i++)
#define dw(i,a,b) for(int i=a;i>b;i--)
#define upd(i,a,b) for(int i=a;i<=b;i++)
#define dwd(i,a,b) for(int i=a;i>=b;i--)
//#define local
typedef long long ll;
const double esp = 1e-6;
const double pi = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int inf = 1e9;
using namespace std;
int read()
{
char ch = getchar(); int x = 0, f = 1;
while (ch<'0' || ch>'9') { if (ch == '-')f = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
return x * f;
}
typedef pair<int, int> pir;
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lrt root<<1
#define rrt root<<1|1
const int N = 2e5 + 10;
struct node { ll l, r, t, op,pos; bool operator<(const node a) { return l == a.l ? op < a.op:l<a.l; } }a[N<<1];
vector<ll>time;
ll tree[N << 2];
int id[N << 2];
int ans[N<<2];
int n, m;
void pushup(int root)
{
tree[root] = max(tree[lrt], tree[rrt]);
}
void build(int l, int r, int root)
{
id[root] = -1;
if (l == r)
{
tree[root] = -1;
return;
}
int mid = (l + r) >> 1;
build(lson);
build(rson);
pushup(root);
}
void update(int l, int r, int root, int pos, ll val,int idk)
{
if (l == r)
{
tree[root] = val;
id[root] = idk;
return;
}
int mid = (l + r) >> 1;
if (pos <= mid)update(lson, pos, val,idk);
else update(rson, pos, val,idk);
pushup(root);
}
ll querry(int l, int r, int root, int lf, int rt, int val)
{
if (tree[root] < val)
{
return -1;
}
if (l == r)
{
return id[root];
}
int mid = (l + r) >> 1;
int ans = -1;
if (lf <= mid)
{
ans = querry(lson, lf, rt, val);
if (ans >= 0)return ans;
}
if (rt > mid)return querry(rson, lf, rt, val);
}
int main()
{
n = read(), m = read();
int x, y, z;
up(i, 0, n)
{
x = read(), y = read(), z = read();
time.push_back(z);
a[i] = node{ x,y,z,0,i };
}
up(i, 0, m)
{
x = read(), y = read(), z = read();
time.push_back(z);
a[n+i] = node{ x,y,z,1,i };
}
sort(time.begin(), time.end());
time.erase(unique(time.begin(), time.end()),time.end());
int len = time.size();
sort(a, a + n + m);
build(1, len, 1);
up(i, 0, n + m)
{
if (a[i].op == 0)
{
int pos = lower_bound(time.begin(), time.end(), a[i].t)-time.begin()+1;
update(1, len, 1, pos,a[i].r,a[i].pos);
}
else
{
int pos = lower_bound(time.begin(), time.end(), a[i].t) - time.begin() + 1;
ll q = querry(1, len, 1, pos, len,a[i].r);
ans[a[i].pos] = q == -1 ? -1 : q+1;
}
}
up(i, 0, m)cout << ans[i] << " ";
return 0;
}