机器学习-分类-朴素贝叶斯算法

本文介绍了朴素贝叶斯算法的基础知识,包括贝叶斯定理、特征条件独立性假设以及三种常见模型:多项式、高斯和伯努利模型。文章还提供了Python代码示例,用于理解和应用朴素贝叶斯分类。
摘要由CSDN通过智能技术生成

三、朴素贝叶斯算法

朴素贝叶斯算法是基于贝叶斯定理与特征条件独立性假设的分类方法

1.原理

(1)贝叶斯定理

P(B|A)=\frac{P(B)P(A|B)}{P(A)}

P(A)=\sum_{i=1}^{n}P(B_i)P(A|B_i)

(2)特征条件独立性假设

给定一个数据集(x,y),每个样本x包含n维特征,类标签集合y包含N个类别y\subseteq (y_1,y_2,...y_k)

现给定一个新样本x,需要判断它属于哪一类。在这里,我们取概率最大的类别作为其类标签,即问题转化为:找到P(y_1|x),P(y_2|x),...P(y_k|x)最大值对应的类标签。即

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值