三、朴素贝叶斯算法
朴素贝叶斯算法是基于贝叶斯定理与特征条件独立性假设的分类方法
1.原理
(1)贝叶斯定理
(2)特征条件独立性假设
给定一个数据集(x,y),每个样本x包含n维特征,类标签集合y包含N个类别。
现给定一个新样本x,需要判断它属于哪一类。在这里,我们取概率最大的类别作为其类标签,即问题转化为:找到最大值对应的类标签。即
朴素贝叶斯算法是基于贝叶斯定理与特征条件独立性假设的分类方法
(1)贝叶斯定理
(2)特征条件独立性假设
给定一个数据集(x,y),每个样本x包含n维特征,类标签集合y包含N个类别。
现给定一个新样本x,需要判断它属于哪一类。在这里,我们取概率最大的类别作为其类标签,即问题转化为:找到最大值对应的类标签。即