深度学习
文章平均质量分 87
書辭
这个作者很懒,什么都没留下…
展开
-
《PyTorch深度学习实践》学习笔记—— 第1讲 Overview
文章目录前言1 算法2 框架3 学习系统发展4 维度诅咒压缩空间线性5 深度学习系统与以前的差别6 机器学习策略前言本文仅为个人学习记录,便于以后查看使用。1 算法四种:穷举法贪心法分治法动态规划2 框架只是包含关系,如表示学习只是机器学习的一部分。3 学习系统发展4 维度诅咒假设1个维度上取10个样本可做到贴近实际分布,则2个维度需要102=100个样本,3个维度需要103=1000个样本……N个维度就需要10N个样本。压缩空间把N维空间压缩到3维。线性设有一个原创 2021-05-31 22:48:41 · 358 阅读 · 2 评论 -
《动手学深度学习》(Pytorch版) 学习笔记——5.1二维卷积层
文章目录前言1 二维互相关运算前言Python初学者一枚,文章仅为个人学习记录,便于以后查看使用。卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。1 二维互相关运算通常在卷积层中使用更加直观的互相关(cross-correlation)运算。在二维卷积层中,一个二维输入数组和一个二维核(kernel)数组通过互相关运算输出一个二维数组。将上述过程实现在corr2d函数里。它接受输入数组X与核数组K,并原创 2021-05-23 20:11:30 · 673 阅读 · 0 评论 -
《动手学深度学习》(Pytorch版) 学习笔记—— 3.3 线性回归的简洁实现
文章目录前言1 生成数据集2 读取数据3 定义模型4 初始化模型参数5 定义损失函数6 定义优化算法7 训练模型8 小结前言Python初学者一枚,文章仅为个人学习记录,便于以后查看使用。使用PyTorch更方便地实现线性回归的训练。1 生成数据集生成与上一节中相同的数据集。其中features是训练数据特征,labels是标签。import torchimport numpy as npnum_inputs = 2num_examples = 1000true_w = [2, -原创 2021-05-17 11:45:58 · 941 阅读 · 0 评论 -
《动手学深度学习》(Pytorch版) 学习笔记—— 3.2 线性回归的从零开始实现
文章目录前言1 生成数据集前言Python初学者一枚,文章仅为个人学习记录,便于以后查看使用。本节介绍如何只利用Tensor和autograd来实现一个线性回归的训练。首先,导入本节中实验所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。%matplotlib inlineimport torchfrom IPython import displayfrom matplotlib import pyplot as pltimport numpy as npimp原创 2021-05-17 10:09:48 · 255 阅读 · 0 评论 -
《动手学深度学习》(Pytorch版) 学习笔记—— 2.3 自动求梯度
文章目录前言1 概念2 Tensor3 梯度3.1 一些实际例子3.1.13.1.2 中断梯度追踪的例子3.1.3前言Python初学者一枚,文章仅为个人学习记录,便于以后查看使用。深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。1 概念Tensor是这个包的核心类。如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则原创 2021-05-11 11:58:37 · 477 阅读 · 1 评论 -
《动手学深度学习》(Pytorch版) 学习笔记—— 2.2 数据操作
文章目录前言1 创建Tensor前言Python初学者一枚,文章仅为个人学习记录,便于以后查看使用。在PyTorch中,torch.Tensor是存储和变换数据的主要工具。Tensor和NumPy的多维数组非常类似。然而,Tensor提供GPU计算和自动求梯度等更多功能,这些使Tensor更加适合深度学习。"tensor"这个单词一般可译作“张量”,张量可以看作是一个多维数组。标量可以看作是0维张量,向量可以看作1维张量,矩阵可以看作是二维张量。1 创建Tensor首先导入PyTorch:i原创 2021-05-11 09:52:17 · 435 阅读 · 0 评论