- 博客(219)
- 问答 (1)
- 收藏
- 关注

原创 通过SSH(XShell)查看远程服务器上的TensorBoard可视化界面
我的events.out.tfevents.1730170782文件存储于 “/root/autodl-tmp/LViT-main/Covid19/LViT/Test_session_10.29_10h59/tensorboard_logs/”文件夹下。千万不要写成 cd /root/autodl-tmp/LViT-main/Covid19/LViT/Test_session_10.29_10h59/tensorboard_logs/点击连接后,XShell会自动打开一个新的连接窗口。
2024-10-29 15:23:30
833

原创 命令提示符adb shell的具体配置和使用方法
第一步:配置环境变量(已经配置好adb的可以直接看第二步)如图,找到图中default program setting点击后找到这个路径:这个路径会是因人而异的,所以在这里就应该是你自己电脑上的路径按照这个路径找到这个路径下的platform-tools文件夹,打开文件夹后会发现有一个 ADB.exe如图:在这里是点不开的。之所以是要一路从AndroidStudio点过来这个文件夹...
2019-05-24 15:02:06
6640
1
原创 chrome浏览器无法登陆谷歌学术的解决方法
方法:点击chrome浏览器右上角的三个点,选择设置。第二步,选择隐私与安全,点击删除浏览数据。最有效的方法,清除浏览器的cookie。
2025-05-19 15:57:01
179
原创 pycharm 配置路径映射 将本地文件映射(mapping)到远程服务器上
PyCharm 2022.2及以后的版本,取消了直接在【Python解释器】设置里配置路径映射(Mapping)的功能。点击右上角运行按钮旁的小下拉箭头,选择【Edit Configurations(编辑配置)】。打开路径映射对话框,输入正确的本地路径和对应的远程路径。弹出的窗口中,路径映射为空。
2025-04-28 15:50:46
199
原创 利用XShell 创建隧道(tunnel)在本地可视化远程服务器上的Visdom
在弹出的对话框中,先填写自己本地的浏览器的地址以及对应的端口号。然后呢,再填写autod远程服务器的地址和端口号。在Xshell终端服务器上通过命令符,将远程服务器的Visdom在本地浏览器中显示。,在新打开的终端中,输入以下指令。(这个终端不要关掉,这就表示,以下的指令都在新终端输入)打开Xshell,选择你想要操作的终端,单击右键 -> 选择属性。然后在本地服务器输入:http://localhost:8097。完成后点击确定,并在属性对话框中点击“连接”打开属性对话框后,单击添加按钮。
2025-04-16 23:07:19
316
原创 概率输出和独热分割掩码的主要区别:
例如,对于某个像素点,可能输出[0.7, 0.2, 0.1],表示它属于第一类的概率是0.7,第二类是0.2,第三类是0.1。例如,如果模型最终预测该像素属于第一类,那么独热向量就是[1, 0, 0]在计算某些损失函数时,使用独热形式更合适,因为它提供了明确的标签信息。通常是通过对概率输出取argmax(选择最大概率的类别)来获得。只包含0和1的向量,在预测类别位置标记为1,其他位置都是0。模型的概率输出可能是:[0.7, 0.2, 0.1]转换成独热分割掩码后变成:[1, 0, 0]
2025-01-13 21:22:18
217
原创 Microsoft office word 公式加序号
会自动将序号排在最右侧。但是有一个bug,会在当前公司下面自动空一行。出错的情况是:只写了#,敲了回车。在公式后 敲# 同时把编号也写在#后。你自己再手动的把这一行删掉就行了。
2024-12-27 16:19:51
137
原创 latex 引文无法显示reference 并且论文中出现[?],[?]
在.tex中使用这两行代码一直不起作用。.bib也放在和.tex同一文件夹中。解决办法:把bst文件夹中的所有格式文件都拿出来。,但就是不显示参考文献。
2024-12-06 00:19:03
367
原创 深度学习中one-hot 编码的正确理解
One-hot 编码是将类别标签转化为向量的有效方法,确保模型理解类别之间的独立性。通过具体的分类和分割任务的实例,我们看到 one-hot 编码如何帮助我们表示真实标签。结合概率输出,one-hot 标签使得我们可以利用交叉熵损失等方法来衡量模型的预测性能,从而指导模型的学习和优化。
2024-10-29 17:24:34
1009
原创 用Pycharm 运行深度学习,在测试(推理)运行测试文件会自动进入pytest模式,如何关闭默认测试框架
文件 -> 设置 -> ->工具 -> python 集成工具 -> 测试。点击右下角的应用即可。
2024-10-27 16:51:59
431
原创 基于少样本(小样本)的图像分割
在少样本学习(尤其是少样本分割)中,和分别承担不同的任务,目的是通过少量标注的样本来实现对新图像的分割。总的来说,负责从少量标注样本中学习类原型,而则利用这些类原型对新的查询图像进行分割。两者的协作使得模型能够在少样本的情况下有效泛化。具体是怎么匹配的?在少样本学习的图像分割任务中,和的匹配过程主要基于(metric learning)思想。
2024-10-01 15:23:47
3060
1
原创 pycharm 在debug时出现收集数据(collecting data)的解决方案
选择构建、执行、部署 栏下的python 调试器(python debuger)-> 勾选上右侧的Gevent 兼容。最后,点击右下角的应用。无需重启pycharm就可以得到debug时的数据。解决方法亲测有效:先打开设置。
2024-08-30 10:02:17
971
1
原创 Visio中对象不能通过shift+键盘方向键微调位置
不同的键盘的scroll lock的解锁都有点区别。观察键盘中带有“Scroll”或者“src lk”或相似的按键,按住“src lk”即可。如果不行,就再试一下按住“fn+src lk”。解决方法二:有时候通过键盘方向键对Visio图进行位置的细微修改时,会出现整个画布移动而不是对象的移动。这时,你该检查Scroll Lock 是否被按下。解决方法一:window 调出来屏幕键盘 关闭“scroll num lock”键。
2023-12-27 09:17:19
1538
原创 ITK 医学影像软件操作
export保存图像存为jpg,png这种图片(1)image slice影像截层截图(2) screenshot和image差不多,但更多细节建议用这个保存(下属三个选项是三个层面)(3)screenseries保存是一系列的截层,保存时要等他平扫扫描完在关闭,否则不会显示所有图片。foreground label将左下角的activelabel进行调节,(next编程下一个label(label1-label2),previous变成上一个label)views:没啥用,把工具栏隐藏啥的。
2023-12-06 08:59:22
808
原创 深度学习计算模型FLOPS的代码
记录计算FLOP的代码。代码以VNet为例子。get_model_complexity_info可以打印每一层所需的macs和params。有关ptflop包我放在。
2023-12-05 20:54:26
1200
原创 ITK-SNAP 如何删除3D(三维)坐标轴
Edit→Slice Annotations→Annotations Perferences→左栏Appearace然后选3D View下的Crossshair,把Visiable勾选去掉,也可以更改坐标轴以及背景颜色啥的,2D的Slice同理。三个2D视图中的蓝色定位线可直接通过“X”,实现删除/添加。
2023-11-25 17:17:36
1168
原创 收藏 LaTex 常用的符号
https://editor.csdn.net/md/?not_checkout=1&spm=1001.2101.3001.4503
2023-10-19 19:58:48
110
原创 word中给公式加序号的方法
然后呢,在公式后面敲上这个公式在整篇文章中的序号。然后,在公式和序号之间,按住shift+3(#)①首先,用word插入一个公式。
2023-09-27 20:46:01
1299
1
原创 ValueError: num_samples should be a positive integer value, but got num_samples=0 解决方法
ValueError: num_samples should be a positive integer value, but got num_samples=0的解决方法
2023-09-09 15:17:09
916
3
原创 生成2×2 或3*3 混淆矩阵(confusion matrix)的python代码
生成2×2 或3*3 混淆矩阵(confusion matrix)的python代码
2023-08-07 16:49:11
809
原创 用 prediction 和 mask 实现over segmentation under segmentatoin 效果
在医学影像分割中,为了可视化分割效果,我们可以将不同网络生成的prediction和mask进行细致的对比,并将结果展示在图1。其中绿色表示prediction正确分割的区域,红色表示over segmentation region,蓝色表示under segmentation region.需要注意,代码中RGB images、mask、prediction宽和高的比例都要相同。
2023-07-27 14:40:23
320
原创 urllib.error.URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed解決
urllib.error.URLError:
2023-06-12 17:57:59
1200
1
原创 from albumentations.pytorch import ToTensor 报错:在 ‘__init__.py‘ 中找不到引用 ‘ToTensor‘
from albumentations.pytorch import ToTensor 报错:在 '__init__.py' 中找不到引用 'ToTensor'的解决方法
2023-05-18 15:53:03
637
原创 pip install pytorch_lightning 出错,或显示安装成功但是代码中仍报错的解决方法
pip install pytorch_lightning 出错,或显示安装成功但是代码中仍报错的解决方法
2023-04-15 20:18:24
1698
1
转载 膨胀卷积(Dilated convolution)
膨胀卷积:保持参数个数不变的情况下增大了卷积核的感受野,让每个卷积输出都包含较大范围的信息;一个扩张率为2的3×3卷积核,感受野与5×5的卷积核相同,但参数数量仅为9个,是5×5卷积参数数量的36%。对比传统的conv操作,3层3x3的卷积加起来,stride为1的话,只能达到(kernel-1)*layer+1=7的感受野,也就是和层数layer成线性关系,而dilated。:CNN中,某一层输出结果中一个元素所对应的输入层的区域大小,感受野是卷积核在图像上看到的大小,例如3×3卷积核的感受野大小为9。
2023-04-10 21:45:51
437
原创 Could not find a version that satisfies the requirement mmseg No matching distribution found for mms
ERROR: Could not find a version that satisfies the requirement mmseg (from versions: 1.2.4, 1.3.0)ERROR: No matching distribution found for mmseg的解决方法
2023-03-30 16:54:12
484
TransUNet使用的Synapse数据集
2022-10-28
图片分类经典数据集——VOC2007数据集
2022-09-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人