【NLP算法面经】微软、腾讯、网易算法岗热乎面筋(★含面题整理★)

【NLP算法面经】微软、腾讯、网易算法岗热乎面筋(★含面题整理★)


🌟 嗨,你好,我是 青松 !

🌈 自小刺头深草里,而今渐觉出蓬蒿。


NLP Github 项目推荐:


文章目录


废话不多说,直接上面筋。投递方向:广告算法工程师。

微软苏州

bing ads。他家业务很厉害。

第一轮

不过简历,直接考题。

  1. 有一个数组元素[a0, a1 …],从数组中找出连续的数组和为最大。

  2. 有一个常数n,有一个数组元素[a0, a1 …]无重复元素。从数组里面找出所有可能的组合加和是n,并且输出。

第二轮

过简历,面试官不是专业学算法的。

  • 如何理解kafka框架?

  • 在算子开发性能的时候有哪些优化的点?

  • 你在团队中发挥什么样的角色?如何使用mapreduce框架?

  • 有一个数组(对,全是数组题目),从数组中找出连续数组乘积最大。

第三轮

面试官是学算法的,未来的leader。

  • 如何构建user和item的特征?

  • 双塔模型的结构?

  • 深度学习网络Factorize Machine相对于线性模型有什么好处?

  • Spark用过吗?

  • 如何构建一个分布式机器学习框架?

  • 假设有两个整数a,b. 那么a/b有可能除尽和除不尽。如果除尽,找出循环的单节。图论。

第四轮

直接上题目:

  1. 假设一个数组只有"a"和“b”两种string 组成。如何重新安排数组,使得最多有3个a相邻,3个b相邻。如果不能安排,返回None

  2. 假设有a,b两个int,转成二进制后 c = a | b. 假设从0->1, 1->0理解为一个action。最少需要多少个action计算c = a|b?

第五轮
  • 问简历

  • hdfs的底层原理

  • mapreduce底层原理,答得一塌糊涂。

  • 题目:之字型二叉树广度优先遍历。要求一定要用C语言写。

不过面试官好像不在乎,说没关系,题目做出来就行。

第六轮

boss面。

  • 先问题目:如何实现a/b。a和b是string,返回double。不难。

  • 聊人生:家是哪里人,为什么要从字节离职,对微软什么看法。你很优秀,接受平薪吗,微软开得不高。

聊完直接得到口头offer。

正式offer在3天后获得。

网易杭研

第一面

组长面:

  • 说一下做一个推荐系统是如何从召回,粗排,精排最终推荐的?每一个环节需要注意哪些问题?

  • 所以说你做的粗排环节,DSSM的好处是什么,为什么不用单塔模型?

  • 如何构建用户侧特征,如何理解静态和动态特征?用过强化学习吗?强化学习在广告中的应用有哪些?

  • 举出一个近几年的新广告算法,和传统的算法有相比哪些好处。

第二面

总监面

没怎么面业务,开始聊网易的团队如何如何,你来了应该承担如何如何的角色,聊完直接口头offer。

第三面

HR面

对于未来的规划,遇到最困难的事情,最大的缺点,你是上海人打算在杭州发展吗之类的。

offer在一周后获得。

腾讯上海

第一面

组长面:

  • 如何理解双塔模型中cosine similarity的计算?如何理解粗排和精排的不同需求?

  • 推导任一深度学习网络的反向传播,并且写出伪代码。

第二面

组长面:

  • L1范数和L2范数各自的用处?Batch Nornalization有什么好处,为什么要使用,记得公式吗?

  • 如何防止梯度爆炸和梯度消失,如何理解RNN与LSTM的差别?

  • 当mapreduce任务中有一个reducer执行特别慢,该如何处理?

  • 题目:居然与微软重合了, 从数组中找出连续数组乘积最大。

第三面

总监面:

  • 业务中,召回和粗排分别负责哪些任务?如何从海量item中一步一步选出推荐的item?

  • 为什么需要一步一步缩小item的候选集,而不是用一个算法直接选出推荐?

  • 时间序列模型有哪些?有哪些在广告场景中成功的应用?

第四面

HR面,GM面:聊人生,没聊业务。

等了3周了,还没开奖,腾讯比较磨叽。

尾巴

微软总包涨幅5%,网易总包涨幅10%,因为在字节只有半年经验,涨幅不是很高。

工作了这么久,一个感慨就是, 不要过多透支自己的身体。最近PDD的事情闹得沸沸扬扬,令人深思。工作是一场马拉松,不是赚快钱,需要细水长流。

祝各位拿到顺利的offer!


大模型(LLMs)高频面题全面整理(🌟2025 Offer 必备🌟)

​全面总结了【大模型面试】的高频面题和答案解析,答案尽量保证通俗易懂且有一定深度。

适合大模型初学者和正在准备面试的小伙伴。

希望也能帮助你快速完成面试准备,先人一步顺利拿到高薪 Offer 🎉🎉🎉

一、大模型进阶面 🎯

在这里插入图片描述

💯【大模型进阶面 之 DeepSeek篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【大模型进阶面 之 模型编辑篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【大模型进阶面 之 模型压缩篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【大模型进阶面 之 分布式训练篇】 你必须要会的高频面题

查看答案

点击查看答案

二、大模型微调面 🎯

在这里插入图片描述

💯【大模型微调面 之 SFT篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【大模型微调面 之 PEFT篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【大模型微调面 之 提示学习篇】 你必须要会的高频面题 查看答案

点击查看答案

💯【大模型微调面 之 RLHF篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【大模型微调面 之 提示工程篇】 你必须要会的高频面题

查看答案

点击查看答案

三、大模型(LLMs)基础面 🎯

在这里插入图片描述

💯【大模型基础面 之 LLM架构篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【大模型基础面 之 注意力机制篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【大模型基础面 之 Transformer篇】 你必须要会的高频面题

查看答案

点击查看答案

四、NLP 任务实战面 🎯

在这里插入图片描述

💯【NLP 任务实战面 之 文本分类篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 任务实战面 之 实体识别篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 任务实战面 之 关系抽取篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 任务实战面 之 RAG篇】 你必须要会的高频面题

查看答案

点击查看答案

五、NLP 基础面 🎯

在这里插入图片描述

💯【NLP 基础面 之 分词篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 基础面 之 词嵌入篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 基础面 之 CNN篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 基础面 之 RNN篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 基础面 之 LSTM篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 基础面 之 BERT模型篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 基础面 之 BERT变体篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【NLP 基础面 之 BERT实战篇】 你必须要会的高频面题

查看答案

点击查看答案

六、深度学习面 🎯

在这里插入图片描述

💯【深度学习面 之 激活函数篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【深度学习面 之 优化器篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【深度学习面 之 正则化篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【深度学习面 之 归一化篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【深度学习面 之 参数初始化篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【深度学习面 之 过拟合篇】 你必须要会的高频面题

查看答案

点击查看答案

💯【深度学习面 之 模型评估篇】 你必须要会的高频面题

查看答案

点击查看答案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值