1027 打印沙漏 (20分)(Java 题解)

1027 打印沙漏 (20分)



原题链接:传送门

一、题目:

在这里插入图片描述

二、解析:

像这种图形多半是有规律 。下面两种方式,只是计算是第几个图形k不同而已,其他打印都相同

思路1

一道数学题,需要用等差数列算一下需要多少符号。

相关解释已经在代码中注释。

规律如下:

  • 第一个图形所需个数为,1        化简(1)*2-1。
    第二个图形所需个数为:1+3*2      化简(1+3)*2-1。
    第三个图形所需个数为:1+3*2+5*2    化简(1+3+5)*2-1。
    第四个图形所需个数为:1+3*2+5*2+7*2  化简(1+3+5+7)*2-1。
    括号中的数为一个等差数列。
    首项a1=1,公差d=2,得出an通项公式:an=1+(n-1)*2,化简为an=2n-1。
    括号中的数前n项和为:Sn=n(1+2n-1)/2,化简为Sn=n^2。
    推出:
    第n个图形所需个数为(n^2)*2-1。

然后代码算出当前图形需要多少个符号,如果大于给定符号则找到了当前为第k个图形。
备注:

  • 等差数列an的通项公式:an=a1+(n-1)d。
  • 等差数列的求和公式为:Sn=n*a1+n(n-1)d/2 或 Sn=n(a1+an)/2。

AC代码1:

/**
 * @题目 1027 打印沙漏 (20分)
 * <p>
 * 第一个图形所需个数为,1 化简(1)*2-1。
 * 第二个图形所需个数为:1+3*2 化简(1+3)*2-1。
 * 第三个图形所需个数为:1+3*2+5*2 化简(1+3+5)*2-1。
 * 第四个图形所需个数为:1+3*2+5*2+7*2 化简(1+3+5+7)*2-1。
 * 括号中的数为一个等差数列。
 * 首项a1=1,公差d=2,得出an通项公式:an=1+(n-1)*2,化简为an=2n-1。
 * 括号中的数前n项和为:Sn=n(1+2n-1)/2,化简为Sn=n^2。
 * 推出:
 * 第n个图形所需个数为(n^2)*2-1。
 * <p>
 * 等差数列an的通项公式:an=a1+(n-1)d。
 * 等差数列的求和公式为:Sn=n*a1+n(n-1)d/2 或 Sn=n(a1+an)/2。
 *
 * @author ChangSheng
 * @date 2020-02-03
 */
public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        String symbol = sc.next();
        int k = 0; // 计算该图形为第几个图形
        for (int i = 1; i < 1000; i++) {
            int total = (i * i) * 2 - 1;
            if (total > n) {
                k = i - 1; // 第k个图形
                break;
            }
        }
        int row = 2 * k - 1; // 第k个图形的一共有2k-1行。第一行个数为:2k-1。
        // 打印倒三角(不带单个*)
        String line;
        for (int i = 0; i < row / 2; i++) {
            line = "";
            for (int j = 0; j < i; j++)  // 打印每行空白数
                line += " ";
            for (int j = 0; j < row - (i*2); j++) // 打印每行符号数
                line += symbol;
            System.out.println(line);
        }
        // 打印正三角
        int row2 = row / 2 + 1;
        for (int i = 0; i < row2; i++) {
            line = "";
            for (int j = 0; j < row2 - i-1; j++)  // 打印每行空白数
                line += " ";
            for (int j = 0; j < i*2+1; j++) // 打印每行符号数
                line += symbol;
            System.out.println(line);
        }

        int total = (k*k)*2-1; // 消耗符号数。
        System.out.print(n-total);
    }
}

思路2(简单)

还是需要算出打印出图形需要多少符号。不同的是,这次直接用循环算出,而不需要用等差公式。

直接暴力破解,先算出所需要的符号个数k。

我们发现行数和列数是相同的,并且是对称的,
所以先算单独三角形(下面的三角形),然后乘2再减1即为图形所需符号总数。
第一个图形所需符号个数为:(1)*2-1
第二个图形所需符号个数为:(1+3)*2-1
第三个图形所需符号个数为:(1+3+5)*2-1,变成[(1*2-1)+(2*2-1)+(3*2-1)]*2-1
推出:
第n个图形所需符号个数为:[(1*2-1)+(2*2-1)+(3*2-1)+…+(n*2-1)]*2-1

然后代码算出当前图形需要多少个符号,如果大于给定符号则找到了当前为第k个图形。

AC代码2:

/**
 * @题目 1027 打印沙漏 (20分)
 *
 * 直接暴力破解,先算出所需要的符号个数k。
 *
 * 我们发现行数和列数是相同的,并且是对称的,
 * 所以先算单独三角形(下面的三角形),然后乘2再减1即为图形所需符号总数。
 * 第一个图形所需符号个数为:(1)*2-1
 * 第二个图形所需符号个数为:(1+3)*2-1
 * 第三个图形所需符号个数为:(1+3+5)*2-1,变成[(1*2-1)+(2*2-1)+(3*2-1)]*2-1
 * 推出:
 * 第n个图形所需符号个数为:[(1*2-1)+(2*2-1)+(3*2-1)+...+(n*2-1)]*2-1
 * @author ChangSheng
 * @date 2020-02-03
 */
public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        String symbol = sc.next();
        int k = 0; // 计算该图形为第几个图形
        for (int i = 1; i < 500; i++) { // 假设最多500个图形
            int total = 0;
            for (int j = 1; j <= i; j++) { // 计算单个三角形所需个数
                total += j * 2 - 1;
            }
            total = total * 2 - 1; // 总个数
            if (total > n) {
                k = i - 1;
                break;
            }
        }
        // 下面就和都一样了。
        int row = 2 * k - 1; // 第k个图形的一共有2k-1行。第一行个数为:2k-1。
        // 打印倒三角(不带单个*)
        String line;
        for (int i = 0; i < row / 2; i++) {
            line = "";
            for (int j = 0; j < i; j++)  // 打印每行空白数
                line += " ";
            for (int j = 0; j < row - (i*2); j++) // 打印每行符号数
                line += symbol;
            System.out.println(line);
        }
        // 打印正三角
        int row2 = row / 2 + 1;
        for (int i = 0; i < row2; i++) {
            line = "";
            for (int j = 0; j < row2 - i-1; j++)  // 打印每行空白数
                line += " ";
            for (int j = 0; j < i*2+1; j++) // 打印每行符号数
                line += symbol;
            System.out.println(line);
        }
        int total = (k*k)*2-1; // 消耗符号数。
        System.out.print(n-total);
    }
}

相关

PAT - 乙级 - 题解集

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值