1027 打印沙漏 (20分)
原题链接:传送门
一、题目:
二、解析:
像这种图形多半是有规律 。下面两种方式,只是计算是第几个图形k不同而已,其他打印都相同
思路1
一道数学题,需要用等差数列算一下需要多少符号。
相关解释已经在代码中注释。
规律如下:
- 第一个图形所需个数为,1 化简(1)*2-1。
第二个图形所需个数为:1+3*2 化简(1+3)*2-1。
第三个图形所需个数为:1+3*2+5*2 化简(1+3+5)*2-1。
第四个图形所需个数为:1+3*2+5*2+7*2 化简(1+3+5+7)*2-1。
括号中的数为一个等差数列。
首项a1=1,公差d=2,得出an通项公式:an=1+(n-1)*2,化简为an=2n-1。
括号中的数前n项和为:Sn=n(1+2n-1)/2,化简为Sn=n^2。
推出:
第n个图形所需个数为(n^2)*2-1。
然后代码算出当前图形需要多少个符号,如果大于给定符号则找到了当前为第k个图形。
备注:
- 等差数列an的通项公式:an=a1+(n-1)d。
- 等差数列的求和公式为:Sn=n*a1+n(n-1)d/2 或 Sn=n(a1+an)/2。
AC代码1:
/**
* @题目 1027 打印沙漏 (20分)
* <p>
* 第一个图形所需个数为,1 化简(1)*2-1。
* 第二个图形所需个数为:1+3*2 化简(1+3)*2-1。
* 第三个图形所需个数为:1+3*2+5*2 化简(1+3+5)*2-1。
* 第四个图形所需个数为:1+3*2+5*2+7*2 化简(1+3+5+7)*2-1。
* 括号中的数为一个等差数列。
* 首项a1=1,公差d=2,得出an通项公式:an=1+(n-1)*2,化简为an=2n-1。
* 括号中的数前n项和为:Sn=n(1+2n-1)/2,化简为Sn=n^2。
* 推出:
* 第n个图形所需个数为(n^2)*2-1。
* <p>
* 等差数列an的通项公式:an=a1+(n-1)d。
* 等差数列的求和公式为:Sn=n*a1+n(n-1)d/2 或 Sn=n(a1+an)/2。
*
* @author ChangSheng
* @date 2020-02-03
*/
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
String symbol = sc.next();
int k = 0; // 计算该图形为第几个图形
for (int i = 1; i < 1000; i++) {
int total = (i * i) * 2 - 1;
if (total > n) {
k = i - 1; // 第k个图形
break;
}
}
int row = 2 * k - 1; // 第k个图形的一共有2k-1行。第一行个数为:2k-1。
// 打印倒三角(不带单个*)
String line;
for (int i = 0; i < row / 2; i++) {
line = "";
for (int j = 0; j < i; j++) // 打印每行空白数
line += " ";
for (int j = 0; j < row - (i*2); j++) // 打印每行符号数
line += symbol;
System.out.println(line);
}
// 打印正三角
int row2 = row / 2 + 1;
for (int i = 0; i < row2; i++) {
line = "";
for (int j = 0; j < row2 - i-1; j++) // 打印每行空白数
line += " ";
for (int j = 0; j < i*2+1; j++) // 打印每行符号数
line += symbol;
System.out.println(line);
}
int total = (k*k)*2-1; // 消耗符号数。
System.out.print(n-total);
}
}
思路2(简单)
还是需要算出打印出图形需要多少符号。不同的是,这次直接用循环算出,而不需要用等差公式。
直接暴力破解,先算出所需要的符号个数k。
我们发现行数和列数是相同的,并且是对称的,
所以先算单独三角形(下面的三角形),然后乘2再减1即为图形所需符号总数。
第一个图形所需符号个数为:(1)*2-1
第二个图形所需符号个数为:(1+3)*2-1
第三个图形所需符号个数为:(1+3+5)*2-1,变成[(1*2-1)+(2*2-1)+(3*2-1)]*2-1
推出:
第n个图形所需符号个数为:[(1*2-1)+(2*2-1)+(3*2-1)+…+(n*2-1)]*2-1
然后代码算出当前图形需要多少个符号,如果大于给定符号则找到了当前为第k个图形。
AC代码2:
/**
* @题目 1027 打印沙漏 (20分)
*
* 直接暴力破解,先算出所需要的符号个数k。
*
* 我们发现行数和列数是相同的,并且是对称的,
* 所以先算单独三角形(下面的三角形),然后乘2再减1即为图形所需符号总数。
* 第一个图形所需符号个数为:(1)*2-1
* 第二个图形所需符号个数为:(1+3)*2-1
* 第三个图形所需符号个数为:(1+3+5)*2-1,变成[(1*2-1)+(2*2-1)+(3*2-1)]*2-1
* 推出:
* 第n个图形所需符号个数为:[(1*2-1)+(2*2-1)+(3*2-1)+...+(n*2-1)]*2-1
* @author ChangSheng
* @date 2020-02-03
*/
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
String symbol = sc.next();
int k = 0; // 计算该图形为第几个图形
for (int i = 1; i < 500; i++) { // 假设最多500个图形
int total = 0;
for (int j = 1; j <= i; j++) { // 计算单个三角形所需个数
total += j * 2 - 1;
}
total = total * 2 - 1; // 总个数
if (total > n) {
k = i - 1;
break;
}
}
// 下面就和都一样了。
int row = 2 * k - 1; // 第k个图形的一共有2k-1行。第一行个数为:2k-1。
// 打印倒三角(不带单个*)
String line;
for (int i = 0; i < row / 2; i++) {
line = "";
for (int j = 0; j < i; j++) // 打印每行空白数
line += " ";
for (int j = 0; j < row - (i*2); j++) // 打印每行符号数
line += symbol;
System.out.println(line);
}
// 打印正三角
int row2 = row / 2 + 1;
for (int i = 0; i < row2; i++) {
line = "";
for (int j = 0; j < row2 - i-1; j++) // 打印每行空白数
line += " ";
for (int j = 0; j < i*2+1; j++) // 打印每行符号数
line += symbol;
System.out.println(line);
}
int total = (k*k)*2-1; // 消耗符号数。
System.out.print(n-total);
}
}