找出直系亲属【并查集、vector路径存储】

本文介绍了一种通过将传统父子关系逆向建立树形结构的方法,用于解决在亲属关系查询中查找唯一儿子的问题,并能快速判断任意两个人之间的亲缘关系。代码示例展示了如何利用递归和并查集实现这一过程,适用于有向关系的查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个题 找父亲发现不唯一,但是找儿子确是唯一的,那么可以倒过来建树

描述

如果A,B是C的父母亲,则A,B是C的parent,C是A,B的child,如果A,B是C(外)祖父,祖母,则A,B是C的grandparent,C是A,B的grandchild,如果A,B是C的(外)曾祖父,曾祖母,则A,B是C的great-grandparent,C是A,B的great-grandchild,之后再多一辈,则在关系上加一个great-。

输入描述:

输入包含多组测试用例,每组用例首先包含2个整数n(0<=n<=26)和m(0<m<50), 分别表示有n个亲属关系和m个问题, 然后接下来是n行的形式如ABC的字符串,表示A的父母亲分别是B和C,如果A的父母亲信息不全,则用-代替,例如A-C,再然后是m行形式如FA的字符串,表示询问F和A的关系。

输出描述:

对于每组输入数据,如果所有顶点都是连通的,输出"YES",否则输出"NO"。

示例

输入:
4 3
1 2
2 3
3 2
3 2
1 2
2 3
0 0

输出:
NO
YES

参考代码:

路径查找的代码封装成函数更好,我这里重复了两遍

#include<iostream>
#include<map>
#include<vector>
using namespace std;
int son[30];
int height[30];//其实没用到
int n,m;
int s;
vector<int>v;
void Initial()
{
    for(int i=0; i<=27; i++)
    {
        son[i]=i;
        height[i]=0;

    }
}

int Find(int x)
{
    s++;
//    cout<<x<<" has a son is "<<son[x]<<endl;
    v.push_back(x);
    if(x!=son[x])
    {
        return Find(son[x]);
    }
    return son[x];
}
void Union(int x,int y)//这个题每个节点关系很明确,后面的是父母,倒过来建树父母的儿子就是前者,不需要进行常规的height判断
{
    son[y]=x;
    height[x]++;
    return ;
}
bool is_parents(char p)
{
    if(p>='A'&&p<='Z')return true;
    return false;
}

void relation_find(int p1,int p2)
{
    s=0;
    int a =Find(p1);
    int d1 =s;
//    cout<<a<<" "<<s<<endl;
    s=0;
    int b=Find(p2);
    int d2 =s;
//    cout<<b<<" "<<s<<endl;
    if(a !=b)//根源不同
    {
        cout<<"-"<<endl;
    }
    else
    {

        if(d1<d2) //d2更大,说明 p2走过的路径深,是p1的长辈
        {
            v.clear();
            Find(p2);//打印p2路径
            int f=0;
            for(int i=0; i<v.size(); i++)
            {
                if(v[i]==p1)f=1;//p1在p2走过的路径中,说明是直系
            }

            if(f)
            {
                int d = d2-d1;
                if(d == 1)cout<<"child"<<endl;
                else if(d ==2)cout<<"grandchild"<<endl;
                else
                {
                    string great="";
                    d =d-2;
                    while(d--)great+="great-";
                    great+="grandchild";
                    cout<<great<<endl;
                }
            }
            else cout<<"-"<<endl;
        }
        else
        {

            v.clear();
            Find(p1);
            int f=0;
            for(int i=0; i<v.size(); i++)
            {
                if(v[i]==p2)f=1;
            }

            if(f)
            {
                int d = d1-d2;
                if(d == 1)cout<<"parent"<<endl;
                else if(d ==2)cout<<"grandparent"<<endl;
                else
                {
                    string great="";
                    d =d-2;
                    while(d--)great+="great-";
                    great+="grandparent";
                    cout<<great<<endl;
                }
            }
            else cout<<"-"<<endl;

        }



    }
}
int main()
{
    while(cin>>n>>m)
    {
//        cout<<n<<" "<<m<<endl;
        Initial();
//        cout<<n<<endl;
        while(n--)
        {
            string str;
            cin>>str;
            int son = str[0]-'A';
            int f1 = str[1]-'A';
            int f2= str[2]-'A';
            if(is_parents(str[1]))Union(son,f1);
            if(is_parents(str[2]))Union(son,f2);
        }
        while(m--)
        {
            string str;
            cin>>str;
            int p1 = str[0]-'A';
            int p2 = str[1]-'A';
            relation_find(p1,p2);
        }
    }
}
### 关于并查集的应用实例 对于并查集这一数据结构,在处理涉及连通性和分组的问题上非常有效。在PTA平台上存在多个利用并查集解决实际问题的例子。 #### 家庭财产分配中的应用 在一个家庭成员及其直系亲属间共享资产的情况下,通过构建家族树来追踪不同分支下的总资产数额成为可能。当向并查集中插入新关系时,采用如下方式确保较小ID始终作为父节点[^1]: ```cpp void Union(int a, int b){ a = findFather(a); b = findFather(b); if (a > b) { father[a] = b; } else if (a < b) { father[b] = a; } } ``` 此方法有助于简化后续查询操作,并保持内部表示的一致性。 #### 社交集群识别案例 另一个应用场景出现在社交网络分析领域内,其中目标是从大量用户资料中提取出若干个由共同兴趣连接起来的小团体——即所谓的“社交集群”。这里的关键在于如何定义两个个体之间的相似度以及怎样高效地聚类这些实体。一种策略是以特定的兴趣标签为单位建立独立的子群落,再逐步合并重叠区域直至形成稳定的社群结构[^2]。 #### Python实现技巧分享 尽管某些早期提交可能存在效率方面的问题或是未能严格遵循最佳实践原则,但随着经验积累和技术水平提升,社区成员们不断优化各自算法逻辑,使得最终版本更加健壮可靠。此外,积极与其他开发者互动交流也有助于拓宽视野、加深理解[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来杯Sherry

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值