- 博客(2)
- 收藏
- 关注
原创 sklearn逻辑回归Demo
1.库函数导入 ## 基础函数库 import numpy as np ## 导入画图库 import matplotlib.pyplot as plt import seaborn as sns ## 导入逻辑回归模型函数 from sklearn.linear_model import LogisticRegression scikit-learn 是一个开源的机器学习库。它支持监督学习和无监督学习。它还提供了用于模型拟合,数据预处理,模型选择和评估以及许多其他实用程序的各种工具。 监督学习
2020-12-16 22:59:16 133
原创 机器学习算法(一): 基于逻辑回归的分类预测
机器学习算法(一): 基于逻辑回归的分类预测 1 逻辑回归的介绍 Logistic回归属于监督学习,虽然带有“回归”,但它却是名副其实的“分类”算法。分类与传统意义上的回归最大的不同在于,分类算法输出的是离散的标签值,而回归输出的是连续的实数。 我们平常观察到的样本特征往往是连续的实数值,而我们输出的目标是离散整数值,用线性回归很难有效达成“连续值——>离散值”的映射,也就是说用简单的线性回归模型难以实现数据和目标数据之间的拟合。 如果直接拟合很难,那我们可以在输出值方面暂时先做一点点妥协,不再
2020-12-14 23:58:06 216
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人