【leetcode】滑动窗口的最大值

本文介绍了如何使用单调队列和优先队列来解决LeetCode的滑动窗口最大值问题。通过详细讲解思路和Java实现,阐述了如何利用单调队列保持元素严格单调递减并实时找到窗口最大值,以及如何利用优先队列(堆)在窗口移动时快速获取最大值并移除无效元素。
摘要由CSDN通过智能技术生成

子数组的最小值之和——单调栈+动态规划中学习了单调栈,同样的,单调队列也需要掌握。

滑动窗口的最大值是一道经典的单调队列问题。

1. 题目描述

题目链接:239. 滑动窗口最大值

在这里插入图片描述

2. 思路分析

1)单调队列

由于我们需要求出的是滑动窗口的最大值,如果当前的滑动窗口中有两个下标 i 和 j,其中 i 在 j 的左侧(i<j),并且 i 对应的元素不大于 j 对应的元素(nums[i] ≤ nums[j]),那么会发生什么呢?

当滑动窗口向右移动时,只要 i 还在窗口中,那么 j一定也还在窗口中,这是 i 在 j 的左侧所保证的。因此,由于 nums[j] 的存在,nums[i] 一定不会是滑动窗口中的最大值了,我们可以将 nums[i] 永久地移除。

因此我们可以使用一个队列存储所有还没有被移除的下标。在队列中,这些下标按照从小到大的顺序被存储,并且它们在数组 nums 中对应的值是严格单调递减的。因为如果队列中有两个相邻的下标,它们对应的值相等或者递增,那么令前者为 i,后者为 j,就对应了上面所说的情况,即 nums[i] 会被移除,这就产生了矛盾。

当滑动窗口向右移动时,我们需要把一个新的元素放入队列中。为了保持队列的性质,我们会不断地将新的元素与队尾的元素相比较,如果前者大于等于后者,那么队尾的元素就可以被永久地移除,我们将其弹出队列。我们需要不断地进行此项操作,直到队列为空或者新的元素小于队尾的元素。

由于队列中下标对应的元素是严格单调递减的,因此此时队首下标对应的元素就是滑动窗口中的最大值。但与方法一中相同的是,此时的最大值可能在滑动窗口左边界的左侧,并且随着窗口向右移动,它永远不可能出现在滑动窗口中了。因此我们还需要不断从队首弹出元素,直到队首元素在窗口中为止。

为了可以同时弹出队首和队尾的元素,我们需要使用双端队列。满足这种单调性的双端队列一般称作「单调队列」

具体思路:

遍历数组,将 数 存放在双向队列中,并用 L,R 来标记窗口的左边界和右边界。队列中保存的并不是真的 数,而是该数值对应的数组下标位置,并且数组中的数要从大到小排序。如果当前遍历的数比队尾的值大,则需要弹出队尾值,直到队列重新满足从大到小的要求。刚开始遍历时,L 和 R 都为 0,有一个形成窗口的过程,此过程没有最大值,L 不动,R 向右移。当窗口大小形成时,L 和 R 一起向右移,每次移动时,判断队首的值的数组下标是否在 [L,R] 中,如果不在则需要弹出队首的值,当前窗口的最大值即为队首的数。

输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7]

解释过程中队列中都是具体的值,方便理解,具体见代码。
初始状态:L=R=0,队列:{
   }
i=0,nums[0]=1。队列为空,直接加入。队列:{
   1}
i=1,nums[1]=3。队尾值为13>1,弹出队尾值,加入3。队列:{
   3}
i=2,nums[2]=-1。队尾值为3-1<3,直接加入。队列:{
   3,-1}。此时窗口已经形成,L=0,R=2,result=[3]
i=3,nums[3]=-3。队尾值为-1-3<-1,直接加入。队列:{
   3,-1,-3}。队首3对应的下标为1L=1,R=3,有效。result=[3,3]
i=4,nums[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值