【算法】冒泡排序

第三章

3.1.2 蛮力法解决排序(冒泡排序)

//【蛮力法】冒泡算法, 进行len-1次循环比较,每一次循环将该数与后一位数比较,若比后一位数大,则往后交换位置,当比前一位数小(或等于时)则停止
// 
#include<iostream>

#define MAX = 100

using namespace std;

void BubbleSort(int test[],int len){
	for(int i = 0; i<len-1; i++){ 
		for(int j = 0; j<len-i-1 ; j++){
			if(test[j]>test[j+1]){
				swap(test[j],test[j+1]);
			}
		}
	
	}
}

int main(){
	int arr[] = {89,45,68,90,29,34,17};
	int length = sizeof(arr)/sizeof(arr[0]);
	BubbleSort(arr,length);
	for(int i=0;i<length;i++){
		cout<<arr[i]<<" ";
	}
}

注意:以下转载自

https://blog.csdn.net/p1279030826/article/details/99072021

基本步骤:

 1、外循环是遍历每个元素,每次都放置好一个元素;   

 2、内循环是比较相邻的两个元素,把大的元素交换到后面;

 3、等到第一步中循环好了以后也就说明全部元素排序好了;

时间复杂度
这个时间复杂度还是很好计算的:外循环和内循环以及判断和交换元素的时间开销;

最优的情况也就是开始就已经排序好序了,那么就可以不用交换元素了,则时间花销为:[ n(n-1) ] / 2;所以最优的情况时间复杂度为:O( n^2 );

最差的情况也就是开始的时候元素是逆序的,那么每一次排序都要交换两个元素,则时间花销为:[ 3n(n-1) ] / 2;(其中比上面最优的情况所花的时间就是在于交换元素的三个步骤);所以最差的情况下时间复杂度为:O( n^2 );

综上所述:

   最优的时间复杂度为:O( n^2 );

   最差的时间复杂度为:O( n^2 );

   平均的时间复杂度为:O( n^2 );

空间复杂度
空间复杂度就是在交换元素时那个临时变量所占的内存空间;
最优的空间复杂度就是开始元素顺序已经排好了,则空间复杂度为:0;
最差的空间复杂度就是开始元素逆序排序了,则空间复杂度为:O(n);
平均的空间复杂度为:O(1);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值