第三章
3.1.2 蛮力法解决排序(冒泡排序)
//【蛮力法】冒泡算法, 进行len-1次循环比较,每一次循环将该数与后一位数比较,若比后一位数大,则往后交换位置,当比前一位数小(或等于时)则停止
//
#include<iostream>
#define MAX = 100
using namespace std;
void BubbleSort(int test[],int len){
for(int i = 0; i<len-1; i++){
for(int j = 0; j<len-i-1 ; j++){
if(test[j]>test[j+1]){
swap(test[j],test[j+1]);
}
}
}
}
int main(){
int arr[] = {89,45,68,90,29,34,17};
int length = sizeof(arr)/sizeof(arr[0]);
BubbleSort(arr,length);
for(int i=0;i<length;i++){
cout<<arr[i]<<" ";
}
}
注意:以下转载自
https://blog.csdn.net/p1279030826/article/details/99072021
基本步骤:
1、外循环是遍历每个元素,每次都放置好一个元素;
2、内循环是比较相邻的两个元素,把大的元素交换到后面;
3、等到第一步中循环好了以后也就说明全部元素排序好了;
时间复杂度
这个时间复杂度还是很好计算的:外循环和内循环以及判断和交换元素的时间开销;
最优的情况也就是开始就已经排序好序了,那么就可以不用交换元素了,则时间花销为:[ n(n-1) ] / 2;所以最优的情况时间复杂度为:O( n^2 );
最差的情况也就是开始的时候元素是逆序的,那么每一次排序都要交换两个元素,则时间花销为:[ 3n(n-1) ] / 2;(其中比上面最优的情况所花的时间就是在于交换元素的三个步骤);所以最差的情况下时间复杂度为:O( n^2 );
综上所述:
最优的时间复杂度为:O( n^2 );
最差的时间复杂度为:O( n^2 );
平均的时间复杂度为:O( n^2 );
空间复杂度
空间复杂度就是在交换元素时那个临时变量所占的内存空间;
最优的空间复杂度就是开始元素顺序已经排好了,则空间复杂度为:0;
最差的空间复杂度就是开始元素逆序排序了,则空间复杂度为:O(n);
平均的空间复杂度为:O(1);