第一章 概述

第一章 概述


知识表示

​ 知识表示决定了图谱构件的产出目标:知识图谱的语义描述框架(Description framework)、Schema与本体(Ontology)、知识交换语法(Syntax)、实体命名及ID体系

​ 知识图谱:词(Vocabulary)、实体(Entity)、关系(Relation)、事件(Event)、
​ 术语体系(Taxonomy)、规则(Rule)

​ RDF 基本数据模型:三元组(Triple) 基本逻辑结构:主谓宾 描述框架:实体、实体的属性、实体之间的关系

知识抽取

​ 从 结构化数据库 获取知识:D2R工具

​ 从 文本 获取知识(实体识别、关系抽取):

关系抽取方法

			1. 基于特征模板的方法
			2. 基于核函数的监督学习方法
			3. 基于远程监督的方法
			4. 基于深度学习的监督或远程监督方法

知识融合

​ 模式层的融合:新得到的本体融入到已有的本体库中,新旧本体的融合

​ 数据层的融合:实体的指称、属性、关系、所属类别

​ 实体和关系(or 属性)元组的融合

​ 实体消歧:聚类法

知识图谱补全与推理

​ 基于本体推理的补全方法:基于描述逻辑的推理基于图结构和关系路径特征基于表示学习和知识图谱嵌入的链接预测文本信息

知识检索与知识分析

​ 实现形式:语义检索、智能问答

知识图谱与数据库

​知识图谱领域:RDF数据的三元组库(Jena) 语言:SPARQL

​数据库领域:图数据库(管理属性图)

域:RDF数据的三元组库(Jena) 语言:SPARQL

​数据库领域:图数据库(管理属性图)


仅为个人笔记上传存档

©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页