精确率、召回率、准确率

本文深入探讨了机器学习中的关键评估指标——精确率、召回率和等错误率(EER)。精确率衡量预测为正类的样本中真正为正的比例,召回率表示样本中的正类被正确预测的比例,而EER则是错误拒绝率和错误接受率相等时的阈值,常用于生物识别系统。了解这些指标对于优化模型性能至关重要。
摘要由CSDN通过智能技术生成

1、精确率、召回率、准确率

TP:正类预测为正类
FN:正------>负
FP:负------>正
TN:负------>负

精确率 P = T P T P + F P P=\frac{TP}{TP+FP} P=TP+FPTP,表示预测为正的样本中有多少是真正的正样本;

召回率 R = T P T P + F N R=\frac{TP}{TP+FN} R=TP+FNTP,表示样本中的正类有多少被预测正确了;

准确率 R = T P + T N T P + F N + F P + T N R=\frac{TP+TN}{TP+FN+FP+TN} R=TP+FN+FP+TNTP+TN

参考链接

2、EER

关于等错误率EER的DET曲线:
错误拒绝率FR(又叫漏报率):正样本中被错误识别为负样本的概率(即正确的被认为错了);
错误接受率FA(又叫误报率):负样本中被错误识别为正样本的概率。
请添加图片描述

参考链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值