感悟
哈夫曼树,核心思想:就是每次从当前的根节点数组中,找出两个权值最小的根节点,然后让它们两个分别作为左子树和右子树,去构造一颗新的树,并把这个新的根节点,添加到根节点数组中。如此反复,直到就只剩一个根节点。
思路
//n是度为0的节点数
- 创捷一个空间大小为 2 * n的线性表;//new Tree_nde[2 * n];
- 将每个节点的双亲,左孩子,右孩子都初始化为0,并输入前n个节点的权值
- 循环n - 1次,每次找到表中,权值最小的根节点的下标。
- 将这两个根节点的双亲,设置为第n + i个节点
- 让第n + i个节点的左右孩子,为这两个节点。
讲的不怎么清楚,也许看代码更好懂一些。
Q1: 怎么知道是否为根节点?
我们每次找出两个权值最小的根节点,使这两个节点的parent为最后一个根节点的下一个位置,因为这两个根节点的parent已经不为0,所以他们已经不再是根节点。
Q2:怎么同时找到两个最小值?
首先找到第一个最小值,然后在找第二个最小值时,判断当前节点,是否为刚才找到的节点,如果是,就跳过,进行下一次寻找。
Q3:总共有多少个节点?
我们输入的值,都是哈夫曼树的叶子节点,而且哈夫曼树没有度为1的节点,根据公式n0 = n2 + 1;总共有2 * n0 - 1个节点。
//5 29 7 8 14 23 3 11
#include<iostream>
using namespace std;
typedef struct Tree_node
{
int weight;
int parent,lchild,rchild;
};
void get_min(Tree_node * arr, int n, int &s1, int &s2)
{
int min = 100000;
for(int i = 1; i<= n; i++)
{
if(arr[i].parent != 0)
continue;
if(arr[i].weight <= min)
{
min = arr[i].weight;
s1 = i;
}
}
min = 100000;
for(int i = 1; i<= n; i++)
{
if(arr[i].parent != 0 || i == s1) //查找除了刚才那个以外,最小的根节点
continue;
if(arr[i].weight <= min)
{
min = arr[i].weight;
s2 = i;
}
}
}
int main()
{
int n;cin >> n;
Tree_node * arr = new Tree_node[2 *n];
for(int i = 1; i <= 2 * n - 1; i++)
{
arr[i].parent = 0;
arr[i].lchild = 0;
arr[i].rchild = 0;
if(i <= n)
{
cin >> arr[i].weight;
}
}
for(int i = 1; i <= 2 * n -1; i++)
{
cout<<i<<"\t"<<arr[i].weight<<"\t"<<arr[i].parent<<"\t";
cout<<arr[i].lchild<<"\t"<<arr[i].rchild<<endl;
}
cout<<endl<<"------------------------------------------"<<endl<<endl;
int s1, s2;
for(int i = n + 1; i <=2*n - 1; i++)
{
get_min(arr,i-1,s1,s2);
arr[s1].parent = i;
arr[s2].parent = i;
arr[i].lchild = s1;
arr[i].rchild = s2;
arr[i].weight = arr[s1].weight + arr[s2].weight;
}
for(int i = 1; i <= 2 * n -1; i++)
{
cout<<i<<"\t"<<arr[i].weight<<"\t"<<arr[i].parent<<"\t";
cout<<arr[i].lchild<<"\t"<<arr[i].rchild<<endl;
}//5 29 7 8 14 23 3 11
}
哈夫曼编码
#include<iostream>
using namespace std;
typedef double TElemTpye;
typedef struct Tree_Node
{
TElemTpye weight;
int parent, lchild, rchild;
string Huffman_num;
};
void Get_min(Tree_Node * arr,int n, int &x, int &y)
{
int Min = 100;
for(int i = 1; i <= n; i++)
{
if(arr[i].weight < Min && arr[i].parent == 0)
{
Min = arr[i].weight;
x = i;
}
}
Min = 100;
for(int i = 1; i <= n; i++)
{
if(arr[i].weight < Min && arr[i].parent == 0 && i != x)
{
Min = arr[i].weight;
y = i;
}
}
}
Tree_Node * Create_HuffmanTree(int n)
{
Tree_Node * arr = new Tree_Node[2 * n];
for(int i = 1; i < 2 * n; i++)
{
arr[i].parent = 0;
arr[i].lchild = 0;
arr[i].rchild = 0;
if(i <= n) cin>>arr[i].weight;
}
int x, y;
for(int i = 1; i < n; i++)
{
Get_min(arr,n + i -1,x,y);
arr[x].parent = n + i;
arr[y].parent = n + i;
arr[n + i].weight = arr[x].weight + arr[y].weight;
arr[n + i].lchild = x;arr[n + i].rchild = y;
}
return arr;
}
int Get_Huffman_num(Tree_Node * arr,int n)
{
string num = "";
int index = arr[n].parent, x = n;
while(index != 0)
{
if(arr[index].lchild == x)
num = num + "0";
else
num = num + "1";
x = index;
index = arr[index].parent;
}
//cout<<num;
for(int i = 0; i < num.length(); i++)
arr[n].Huffman_num += num[num.length() - i - 1];
cout<<arr[n].weight<<"\t"<<arr[n].Huffman_num<<endl;
}
int main()
{
//Create_HuffmanTree(8);
Tree_Node * arr = Create_HuffmanTree(8);
for(int i = 1; i <= 8; i++)
{
Get_Huffman_num(arr,i);
}
// 5 29 7 8 14 23 3 11
}