动态规划 --- 购买股票的最佳时机

[leetcode123]购买股票的最佳时机

题目链接:[leetcode123]

题目描述:

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。

分析

首先看到这题,能注意到 最多可以完成 两笔 交易 这个字段!可以看出对于不同的测试样例,需要你找到一个“策略”,从而可以基本得到,使用动态规划的思想。

状态定义

  • s0 : 初始状态,设置为0;

  • s1 : 第一次买入的最大获利,初始值为-prices[0]

  • s2 : 第一次卖出的最大获利,可以看出与 s1 状态有关系,关系如下表达式:
    s 2 = M a t h . m a x ( s 2 , s 1 + p r i c e s [ i ] ) s2 = Math.max(s2, s1 + prices[i]) s2=Math.max(s2,s1+prices[i])

  • s3 : 第二次买入的最大获利,这里可以想到与 第一次卖出的最大收益s2 有着状态的联系!关系如下:
    s 3 = M a t h . m a x ( s 3 , s 2 − p r i c e s [ i ] ) s3 = Math.max(s3,s2-prices[i]) s3=Math.max(s3,s2prices[i])

  • s4 : 第二次卖出的最大获利,与s3的联系如下:
    s 4 = M a t h . m a x ( s 4 , s 3 + p r i c e s [ i ] ) s4 = Math.max(s4,s3+prices[i]) s4=Math.max(s4,s3+prices[i])

下面我们通过一副图来展示一下状态之间的转换:

在这里插入图片描述

代码

我们先用二维的dp来阐述流程:

public int maxProfit(int[] prices) {
    int len = prices.length;
    if (len < 2) {
        return 0;
    }

    // dp[i][j] ,表示 [0, i] 区间里,状态为 j 的最大收益
    // j = 0:什么都不操作
    // j = 1:第 1 次买入一支股票
    // j = 2:第 1 次卖出一支股票
    // j = 3:第 2 次买入一支股票
    // j = 4:第 2 次卖出一支股票

    // 初始化
    int[][] dp = new int[len][5];
    dp[0][0] = 0;
    dp[0][1] = -prices[0];

    // 3 状态都还没有发生,因此应该赋值为一个不可能的数
    for (int i = 0; i < len; i++) {
        dp[i][3] = Integer.MIN_VALUE;
    }

    // 状态转移只有 2 种情况:
    // 情况 1:什么都不做
    // 情况 2:由上一个状态转移过来
    for (int i = 1; i < len; i++) {
        // j = 0 的值永远是 0
        dp[i][0] = 0;
        dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
        dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
        dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
    }
    // 最大值只发生在不持股的时候,因此来源有 3 个:j = 0 ,j = 2, j = 4
    return Math.max(0, Math.max(dp[len - 1][2], dp[len - 1][4]));
}

dp[i][sj] 含义:在第i天 进行 sj 操作获得的最大收益!

我们很容易看出,这个代码可以简化为一维数组,代码如下:

public int maxProfit(int[] prices) {
    if (prices == null || prices.length < 1){
        return 0;
    }
    int s0 = 0, s1 = -prices[0], s2 = 0, s3 = Integer.MIN_VALUE, s4 = 0;
    for (int i = 1; i < prices.length; i++) {
        s1 = Math.max(s1, s0-prices[i]);
        s2 = Math.max(s2, s1+prices[i]);
        s3 = Math.max(s3, s2 - prices[i]);
        s4 = Math.max(s4, s3+prices[i]);
    }
    return Math.max(s0, s2>s4?s2:s4);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值