题目
长100厘米的细长直杆子上有n只蚂蚁。它们的头有的朝左,有的朝右。
每只蚂蚁都只能沿着杆子向前爬,速度是1厘米/秒。当两只蚂蚁碰面时,它们会同时掉头往相反的方向爬行。
这些蚂蚁中,有1只蚂蚁感冒了。并且在和其它蚂蚁碰面时,会把感冒传染给碰到的蚂蚁。
请你计算,当所有蚂蚁都爬离杆子时,有多少只蚂蚁患上了感冒。
输入格式
第一行输入一个整数n (1 < n < 50), 表示蚂蚁的总数。
接着的一行是n个用空格分开的整数 Xi (-100 < Xi < 100), Xi的绝对值,表示蚂蚁离开杆子左边端点的距离。正值表示头朝右,负值表示头朝左,数据中不会出现0值,也不会出现两只蚂蚁占用同一位置。其中,第一个数据代表的蚂蚁感冒了。
输出格式
要求输出1个整数,表示最后感冒蚂蚁的数目。
样例输入
3
5 -2 8
样例输出
1
样例输入
5
-10 8 -20 12 25
样例输出
3
陷阱与思路
陷阱1:这题的杆的长度和蚂蚁爬行速度都是陷阱,如果考虑这些就走入了误区。
思路1:因为每一只蚂蚁速度都相等,可以判断只有相对爬行的蚂蚁才会相遇,且所有相对爬行的蚂蚁都会相遇。
陷阱2:其次是每次碰面,两只蚂蚁都会反向而行,如果你的思路真的按着这个模拟,就和台球一样对对碰,估计是难以知道什么时候才能结束了。
思路2:实际上,蚂蚁只有感冒和没感冒之分,因此当感冒的蚂蚁与没感冒的蚂蚁相碰时,这两只蚂蚁已经是一样的了,相碰然后反向爬行完全可以看作相碰然后沿着原路继续爬行。
思路3:实际上,被感染的链路是这样的,第一只蚂蚁会感染与它相遇的每一只蚂蚁,然后第一被感染的蚂蚁会感染与第一只蚂蚁同行且在它后面的蚂蚁。只有这两只蚂蚁会感染其他蚂蚁,其他蚂蚁不具感染条件
代码
#include<iostream>
using namespace std;
int main(){
int number = 0;
int ans = 1;
cin>>number;
int away[number] = {0};
for(int i=0;i<number;i++){
cin>>away[i];
}
if(away[0]>0){
for(int i=1;i<number;i++){
if(away[i]>0&&away[i]<away[0])
ans++;
if(away[i]<0&&-away[i]>away[0])
ans++;
}
}else{
for(int i=1;i<number;i++){
if(away[i]<0&&-away[i]>-away[0])
ans++;
if(away[i]>0&&away[i]<-away[0])
ans++;
}
}
cout<<ans<<endl;
return 0;
}