常见的排序算法
常见的排序算法有很多,接下来我们就说三种比较简单常见的排序算法:冒泡排序,选择排序,插入排序。
1. 冒泡排序
冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
- 算法描述
- 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
- 针对所有的元素重复以上的步骤,除了最后一个;
- 重复步骤1~3,直到排序完成。
- 效果演示
- 代码实现
public static void main(String[] args) {
int[] arr = {1, 3, 6, 23, 45, 12, 34, 9};
//冒泡排序
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
if (arr[j] > arr[j + 1]) { // 相邻元素两两对比
int a = arr[j]; //元素交换
arr[j] = arr[j + 1];
arr[j + 1] = a;
}
}
}
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
2. 选择排序
选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
- 算法描述
n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
- 初始状态:无序区为R[1…n],有序区为空;
- 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
- n-1趟结束,数组有序化了。
- 效果演示
- 代码实现
public static void main(String[] args) {
int[] arr = {1, 3, 6, 23, 45, 12, 34, 9};
//选择排序
int minIndex;//定义最小的下标
int temp;//定义数组中的元素
for (int i = 0; i < arr.length-1; i++) {
minIndex=i;
for (int j = i+1; j < arr.length; j++) {
if (arr[j]<arr[minIndex]) {//寻找最小的数
minIndex=j;//将最小的元素对应的下标,赋值给最初定义的最小的下标
}
}
temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex]=temp;
}
for (int i = 0; i < arr.length; i++) {
System.err.println(arr[i]);
}
}
- 算法分析
表现最稳定的排序算法之一,因为无论什么数据进去都是O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了。
3. 插入排序
插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
- 算法描述
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
- 重复步骤2~5。
- 效果演示
- 代码实现
public static void main(String[] args) {
int[] arr = {1, 3, 6, 23, 45, 12, 34, 9};
//插入排序
int preIndex;
int current;
for (int i = 1; i < arr.length; i++) {
preIndex = i - 1;
current = arr[i];
while(preIndex>=0 && arr[preIndex]>current) {
arr[preIndex+1] = arr[preIndex];
preIndex--;
}
arr[preIndex+1] = current;
}
for (int i = 0; i < arr.length; i++) {
System.err.println(arr[i]);
}
}
- 算法分析
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。