java-如何计算矩阵中最小和为[0,0]到[M,N]的路径?

我需要使用矩阵的最小和求和来计算从[0,0]到[M,N]的路径?

 

我找到了这样的链接https://www.programcreek.com/2014/05/leetcode-minimum-path-sum-java/,但“动态编程”选项却根本不清楚.

我试图用BFS算法自己实现它,但这是一个缓慢的解决方案

 

public int minPathSum(final int[][] grid) {
        if (grid.length == 1 && grid[0].length == 1) {
            return grid[0][0];
        }
        final int[][] moves = {new int[]{1, 0}, new int[]{0, 1}};
        final Queue<int[]> positions = new ArrayDeque<>();
        final Queue<Integer> sums = new ArrayDeque<>();
        positions.add(new int[]{0, 0});
        sums.add(grid[0][0]);
        int minSum = Integer.MAX_VALUE;
        while (!positions.isEmpty()) {
            final int[] point = positions.poll();
            final int sum = sums.poll();
            for (final int[] move : moves) {
                final int x = point[0] + move[0];
                final int y = point[1] + move[1];
                if (x == grid.length - 1 && y == grid[0].length - 1) {
                    minSum = Math.min(minSum, sum);
                } else if (x > -1 && y > -1 && x < grid.length && y < grid[0].length) {
                    positions.add(new int[]{x, y});
                    sums.add(sum + grid[x][y]);
                }
            }
        }
        return minSum + grid[grid.length - 1][grid[0].length - 1];
    }

您能否解释一下,如果可能的话,您将如何解决?

最佳答案

我对如何实现广度优先搜索感到困惑,但是在这里却难以理解动态公式,对我来说,这似乎更简单:)

 

这几乎是经典的动态编程问题.除第一个单元外,到达第一个单元的solution [y] [x]最多具有两个前身:选项1和选项2.假定我们知道到达每个单元的最佳解决方案,我们将选择哪个边?显然,这两种选择中更好的一种!

如果M保留给定值,则形式上稍微正式一点:

 

solution[0][0] = M[0][0]

// only one choice along
// the top horizontal and
// left vertical

solution[0][x] =
  M[0][x] + solution[0][x - 1]

solution[y][0] =
  M[y][0] + solution[y - 1][0]

// two choices otherwise:
// the best of option 1 or 2

solution[y][x] =
  M[y][x] + min(
    solution[y][x - 1],
    solution[y - 1][x]
  )

我们可以看到我们可以创建一个适当的例程,例如使用for循环,以“自下而上”的顺序访问我们的解决方案矩阵的单元格,因为每个单元格的值取决于我们已经计算出的一个或两个前任.

JavaScript代码:

 

function show(M){
  let str = '';
  for (let row of M)
    str += JSON.stringify(row) + '\n';
  console.log(str);
}

function f(M){
  console.log('Input:\n');
  show(M);
  
  let solution = new Array();
  for (let i=0; i<M.length; i++)
    solution.push(new Array(M[0].length).fill(Infinity));
    
  solution[0][0] = M[0][0];

  // only one choice along
  // the top horizontal and
  // left vertical
  
  for (let x=1; x<M[0].length; x++)
    solution[0][x] =
      M[0][x] + solution[0][x - 1];

  for (let y=1; y<M.length; y++)
    solution[y][0] =
      M[y][0] + solution[y - 1][0];
      
  console.log('Solution borders:\n');
  show(solution);

  // two choices otherwise:
  // the best of option 1 or 2

  for (let y=1; y<M.length; y++)
    for (let x=1; x<M[0].length; x++)
      solution[y][x] =
        M[y][x] + Math.min(
          solution[y][x - 1],
          solution[y - 1][x]
        );
        
  console.log('Full solution:\n');
  show(solution);
  
  return solution[M.length-1][M[0].length-1];
}

let arr = [];
arr[0] = [0, 7, -7];
arr[1] = [6, 7, -8];
arr[2] = [1, 2, 0];

console.log(f(arr));
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值