两种方式去解决。
动态规划:
表示是从(0,0)—>(m,n)的路径的条数。先时候递推的思路往上面去想象,如果当前点已经在终点了。那么可能从上边或者左边来的。那么一直往前面去递推,那么到最后递推到起点,那么就是i1||j1是,那么就是边界情况了。那么获得的关系式如下:
代码如下:
class Solution {
public:
//动态规划,记录出总的目标。
//从当前节点总代(0,0)--->(m,n)
int uniquePaths(int m, int n) {
//注意数组的开辟要大于100
//需要统计一共的路径的总数目
int dp[110][110]={0};
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
if(i==1||j==1) dp[i][j]=1;
else dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m][n];
}
};
组合数学:
一开始我就是用组合数学的思路去想象的。但是一开始还没想出来:
思路如下
:现在从总体去思考,现在是一个m,n的网格,总体上看,肯定是往右走m-1次,且向下走n-1次。那么一共的次数为m+n-2.那么路径的条数为从m+n-2中向右或者向下的路径的条数方式。
代码如下:
class Solution {
public:
int uniquePaths(int m, int n) {
long long res=1;
int down=m+n-2,up=m-1;
for(int i=1;i<=up;i++) res=res*(down-up+i)/i;
return (int)res;
}
};
稍微解释一下:一开始我就是直接通过阶乘去展开的,但是好像出现了错误。错误好像是我溢出了。那么就换一种别的方式去写吧,其实还从组合公式的公式提取出来的。