[NPUCTF2020]EzRSA

encrypt

from gmpy2 import lcm , powmod , invert , gcd , mpz
from Crypto.Util.number import getPrime
from sympy import nextprime
from random import randint
p = getPrime(1024)
q = getPrime(1024)
n = p * q
gift = lcm(p - 1 , q - 1)
e = 54722
flag = b'NPUCTF{******************}'
m = int.from_bytes(flag , 'big')
c = powmod(m , e , n)
print('n: ' , n)
print('gift: ' , gift)
print('c: ' , c)

#n:  17083941230213489700426636484487738282426471494607098847295335339638177583685457921198569105417734668692072727759139358207667248703952436680183153327606147421932365889983347282046439156176685765143620637107347870401946946501620531665573668068349080410807996582297505889946205052879002028936125315312256470583622913646319779125559691270916064588684997382451412747432722966919513413709987353038375477178385125453567111965259721484997156799355617642131569095810304077131053588483057244340742751804935494087687363416921314041547093118565767609667033859583125275322077617576783247853718516166743858265291135353895239981121
#gift:  2135492653776686212553329560560967285303308936825887355911916917454772197960682240149821138177216833586509090969892419775958406087994054585022894165950768427741545736247918410255804894522085720642952579638418483800243368312702566458196708508543635051350999572787188236243275631609875253617015664414032058822919469443284453403064076232765024248435543326597418851751586308514540124571309152787559712950209357825576896132278045112177910266019741013995106579484868768251084453338417115483515132869594712162052362083414163954681306259137057581036657441897428432575924018950961141822554251369262248368899977337886190114104
#c:  3738960639194737957667684143565005503596276451617922474669745529299929395507971435311181578387223323429323286927370576955078618335757508161263585164126047545413028829873269342924092339298957635079736446851837414357757312525158356579607212496060244403765822636515347192211817658170822313646743520831977673861869637519843133863288550058359429455052676323196728280408508614527953057214779165450356577820378810467527006377296194102671360302059901897977339728292345132827184227155061326328585640019916328847372295754472832318258636054663091475801235050657401857262960415898483713074139212596685365780269667500271108538319

decrypt

由于gift较大,为二进制2045位,而(p-1)*(q-1)最高2050位,因此gcd(p-1,q-1)大概在25 以下,但是为保险起见干脆遍历0到100
得到p,q后,变形c=me %n=>c=(m2)e/2 %n(因为e和φ(n)不互质)
得到m2 后尝试直接开平方看是否默认最小值为解,结果确实如此,故得到flag

gift=2135492653776686212553329560560967285303308936825887355911916917454772197960682240149821138177216833586509090969892419775958406087994054585022894165950768427741545736247918410255804894522085720642952579638418483800243368312702566458196708508543635051350999572787188236243275631609875253617015664414032058822919469443284453403064076232765024248435543326597418851751586308514540124571309152787559712950209357825576896132278045112177910266019741013995106579484868768251084453338417115483515132869594712162052362083414163954681306259137057581036657441897428432575924018950961141822554251369262248368899977337886190114104
import gmpy2
e=54722
c=3738960639194737957667684143565005503596276451617922474669745529299929395507971435311181578387223323429323286927370576955078618335757508161263585164126047545413028829873269342924092339298957635079736446851837414357757312525158356579607212496060244403765822636515347192211817658170822313646743520831977673861869637519843133863288550058359429455052676323196728280408508614527953057214779165450356577820378810467527006377296194102671360302059901897977339728292345132827184227155061326328585640019916328847372295754472832318258636054663091475801235050657401857262960415898483713074139212596685365780269667500271108538319
n=17083941230213489700426636484487738282426471494607098847295335339638177583685457921198569105417734668692072727759139358207667248703952436680183153327606147421932365889983347282046439156176685765143620637107347870401946946501620531665573668068349080410807996582297505889946205052879002028936125315312256470583622913646319779125559691270916064588684997382451412747432722966919513413709987353038375477178385125453567111965259721484997156799355617642131569095810304077131053588483057244340742751804935494087687363416921314041547093118565767609667033859583125275322077617576783247853718516166743858265291135353895239981121
for i in range(100):
    phi=gift*i
    pq=n+1-phi
    p_q=gmpy2.iroot(pq**2-4*n,2)[0]
    if gmpy2.is_prime((pq+p_q)//2):
        p=(pq+p_q)//2
        q=pq-p
        break
new_e=e//2
new_d=gmpy2.invert(new_e,(p-1)*(q-1))
m_2=gmpy2.powmod(c,new_d,n)
m=gmpy2.iroot(m_2,2)[0]
import binascii
print(binascii.unhexlify(hex(m)[2:]))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值