import matplotlib.pyplot as plt
import numpy as np
# 创建画布
# F = plt.figure() #创建一个空白画布,可以指定画布的大小、像素
# F.add_subplot() #创建并选中子视图,可以指定子视图的行数、列数和选中图片的编号
# 案例:绘制直线 y = 2*x+1
# x = np.linspace(-1,1,50)
# y = 2*x+1
# print(x,y)
# 创建画布
# plt.figure()
# plot(x,y)绘制曲线
# plt.plot(x,y)
# 保存成图片
# plt.savefig('img/案例1.png')
# 显示画布
# plt.show()
# 案例2:在同一画布中绘制两条曲线
#y1=x^2
#y2=x^4
x = np.arange(0,1.1,0.01)
print(x)
y1 = x**2
y2 = x**4
# 可视化
plt.figure()
# 常用设置
# 1.标题
plt.title('line')
# 2.x和y轴名称
plt.xlabel('x')
plt.ylabel('y')
# 3.x和y轴的刻度范围
plt.xlim((0,1))
plt.ylim((0,1))
# 刻度间距
plt.xticks([0,1]) #只显示0,1
plt.yticks([0,0.4,0.8,1])
plt.plot(x,y1)
plt.plot(x,y2)
# 图例(在绘制后)
plt.legend(['y=x^2','y=x^4'])
# 保存显示
plt.savefig('img/案例2.png')
plt.show()
数据分析(matplotlib)---01.可视化基础
最新推荐文章于 2020-06-04 13:15:33 发布