01
C++的
杨辉三角之
第一个版本–就是最基础的,输入行数,输出打印的图形。话不多说,代码如下:
#include <iostream>
using namespace std;
int main()
{
int num; //代表着要打印的行数
cin >> num; //输入行数
int a[num][num]; //定义一个二维数组,但是打印的时候只打印一部分,不是打印全部
int i, j; //i代表行,j代表列
for (i = 0; i < num; i++)
{
for (j = 0; j <= i; j++)
{
if (j == 0 || i == j)
a[i][j] = 1;
//如果是第一列或者是每一行中行数与列数相等的那一列
else
{
a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
//该行列的数字为上上一行的左下方和右下方的数字之和
}
cout << a[i][j] << " "; //在每一个输出之间加空格
}
cout << endl; //在每一行之后输出一个换行符,
//所以是在第一个for循环外,第二个for循环内输出换行符
}
return 0;
}
输出的结果:(如图)
02
C++的
杨辉三角之
第二个版本,将杨辉三角的输出变化一下。
先贴出结果:
(不知道为什么图片里面有字啊…意思就是这么个意思)
像这样的图形,其实就是在每一行输出之前先输出空格即可。
代码如下:
#include <iostream>
using namespace std;
int main()
{
int num; //代表着要打印的行数
cin >> num; //输入行数
int a[num][num]; //定义一个二维数组,但是打印的时候只打印一部分,不是打印全部
int i, j; //i代表行,j代表列
for (i = 0; i < num; i++)
{
if (i != num) //在每一行输出之前判断是否是num,若不是num,则根据数学规律,输出空格
{
for (int k = num - i - 1; k > 0; k--)
cout << " ";
}
for (j = 0; j <= i; j++)
{
if (j == 0 || i == j)
a[i][j] = 1;
//如果是第一列或者是每一行中行数与列数相等的那一列
else
{
a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
//该行列的数字为上上一行的左下方和右下方的数字之和
}
cout << a[i][j] << " "; //在每一个输出之间加空格
}
cout << endl; //在每一行之后输出一个换行符,
//所以是在第一个for循环外,第二个for循环内输出换行符
}
return 0;
}
第二次改进的时候,我以5行举例,列出来一个数学公式,如图:
(图中左边用圆圈划起来的是空格的个数)
那么根据该图便可知一个求出空格的个数的公式,即第i行要有num - i - 1个空格(i是从0开始)。
03
在Leetcode上也有一个杨辉三角(118题)如图
接下来,就要想思路。
一开始,我不知道vector是什么意思,后来,发现,vector<vector>arr(10) 的意思是10行的一个以arr为首地址的int类型二维数组。
那么搞懂了这个之后解题就比较轻松了。
先看如果输入的numRows是0,直接返回一个空的数组。如果不是0,那么按照本文前两个的杨辉三角的思路,可以写出代码,不同的是,本题中没有要用到cout,而是直接返回这个数组。
话不多说,代码如下:
我这个答案的时间复杂度较低,但是空间复杂度较高,还是有待改进的。