二叉搜索树的三个特性:
这些性质最好在面试之前了解清楚:
二叉搜索树的中序遍历的序列是递增排序的序列。中序遍历的遍历次序:Left -> Node -> Right。
public LinkedList<Integer> inorder(TreeNode root, LinkedList<Integer> arr) {
if (root == null) return arr;
inorder(root.left, arr);
arr.add(root.val);
inorder(root.right, arr);
return arr;
}
Successor 代表的是中序遍历序列的下一个节点。即比当前节点大的最小节点,简称后继节点。 先取当前节点的右节点,然后一直取该节点的左节点,直到左节点为空,则最后指向的节点为后继节点。
public int successor(TreeNode root) {
root = root.right;
while (root.left != null) root = root.left;
return root;
}
Predecessor 代表的是中序遍历序列的前一个节点。即比当前节点小的最大节点,简称前驱节点。先取当前节点的左节点,然后取该节点的右节点,直到右节点为空,则最后指向的节点为前驱节点。
public int predecessor(TreeNode root) {
root = root.left;
while (root.right != null) root = root.right;
return root;
}
方法:递归
这里有三种可能的情况:
要删除的节点为叶子节点,可以直接删除。
要删除的节点不是叶子节点且拥有右节点,则该节点可以由该节点的后继节点进行替代,该后继节点位于右子树中较低的位置。然后可以从后继节点的位置递归向下操作以删除后继节点。
要删除的节点不是叶子节点,且没有右节点但是有左节点。这意味着它的后继节点在它的上面,但是我们并不想返回。我们可以使用它的前驱节点进行替代,然后再递归的向下删除前驱节点。
算法:
如果 key > root.val,说明要删除的节点在右子树,root.right = deleteNode(root.right, key)。
如果 key < root.val,说明要删除的节点在左子树,root.left = deleteNode(root.left, key)。
如果 key == root.val,则该节点就是我们要删除的节点,则:
如果该节点是叶子节点,则直接删除它:root = null。
如果该节点不是叶子节点且有右节点,则用它的后继节点的值替代 root.val = successor.val,然后删除后继节点。
如果该节点不是叶子节点且只有左节点,则用它的前驱节点的值替代 root.val = predecessor.val,然后删除前驱节点。
返回 root。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int successor(TreeNode root){
root = root.right;
while(root.left != null){
root = root.left;
}
return root.val;
}
public int before(TreeNode root){
root = root.left;
while(root.right != null){
root = root.right;
}
return root.val;
}
public TreeNode deleteNode(TreeNode root, int key) {
if(root == null) return null;
if(root.val>key){
root.left = deleteNode(root.left,key);
}
else if(root.val<key){
root.right = deleteNode(root.right,key);
}
else if(root.val == key){
if(root.left == null && root.right == null){
root = null;
}
else if(root.right != null){
root.val = successor(root);
root.right = deleteNode(root.right, root.val);
}
else if(root.left != null){
root.val = before(root);
root.left = deleteNode(root.left, root.val);
}
}
return root;
}
}