寒冰王座 背包问题之完全背包

本帖有引用“背包9讲”,特此感谢!

题目描述:有N种物品和一个容量为V的背包,每种物品都有无限件可用。放入第i种物品的费用是Ci,价值是Wi。求解:讲哪些物品装入背包,可以使这些物品的耗费的费用总和不超过背包容量,且价值总和最大。

基本思路:
这个问题非常相似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已非取或者不取两种,而是有取0件、取1件、取2件……直至取[ V/Ci ]件等许多种。
如果仍然按照解01背包时的思路,令F[ i,v ]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:F[i,v] = max{ F[ i-1,v-kCi ] + kWi | 0 <= kCi <= v }。

接下来看一个题目。

FJUT

直接上代码

答案
小结一下,康康认为01背包和完全背包其实只有一点不同就是第二层循环,需要特别注意!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

起名字可真难QAQ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值