本帖有引用“背包9讲”,特此感谢!
题目描述:有N种物品和一个容量为V的背包,每种物品都有无限件可用。放入第i种物品的费用是Ci,价值是Wi。求解:讲哪些物品装入背包,可以使这些物品的耗费的费用总和不超过背包容量,且价值总和最大。
基本思路:
这个问题非常相似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已非取或者不取两种,而是有取0件、取1件、取2件……直至取[ V/Ci ]件等许多种。
如果仍然按照解01背包时的思路,令F[ i,v ]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:F[i,v] = max{ F[ i-1,v-kCi ] + kWi | 0 <= kCi <= v }。
接下来看一个题目。
直接上代码
小结一下,康康认为01背包和完全背包其实只有一点不同就是第二层循环,需要特别注意!