动态规划(一维)——爬楼梯

力扣 70 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:

输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


先介绍动态规划

这里我们引用一下维基百科的描述:“动态规划(Dynamic Programming, DP)在查找有很多重叠子问题的情况的最优解时有效。它将问题重新组合成子问题。为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间 · · · · · · 动态规划只能应用于有最优 子结构的问题。

简而言之,在查找有很多重叠子问题的情况的最优解时可采用动态规划;动态规划将问题拆分,保存子问题对后一个问题有影响的结果,避免多次解决重复子问题,依次解决各子问题,最后一个子问题就是初始问题的解。


回到我们的题目思路:
  • 简单分析可发现到n阶台阶方法总数是前面到n-1阶和到n-2阶方法数之和,类似斐波那契数列;
  • 而用普通递归算法,每次都要计算前面算过的数;
for (int i = 2; i <= n; ++i) {
dp[i] = dp[i-1] + dp[i-2];
}
  • 最后,考虑用数组将前面的得到的结果存下来;只需要知道n-1和n-2阶方法总数,那么只需要将方法向前滚动记录n-1和n-2时候的总数。
if (n <= 2) return n;
int pre2 = 1, pre1 = 2, cur;
for (int i = 3; i < n; ++i) {
cur = pre1 + pre2;当前方法总数
pre2 = pre1;//保留当前n-1位置方法数,当再上一个台阶,就算是n-2时候的方法数
pre1 = cur;//当前是n的方法数,当再上一个台阶,就算是n-1时候的方法数,接下来再做和算下一步的方法数
}

这样把复杂度优化到了 O(1)。

参考:https://baijiahao.baidu.com/sid=1635388976060265522&wfr=spider&for=pc

以下是两种不同的动态规划解决方案:

自上而下:你从最顶端开始不断地分解问题,直到你看到问题已经分解到最小并已得到解决,之后只用返回保存的答案即可。这叫做记忆存储。
自下而上:你可以直接开始解决较小的子问题,从而获得最好的解决方案。在此过程中,你需要保证在解决问题之前先解决子问题。这可以称为表格填充算法。
至于迭代和递归与这两种方法的关系,自下而上用到了迭代技术,而自上而下则用到了递归技术。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值