推荐算法
文章平均质量分 92
总结推荐算法
Rocket,Qian
硕士毕业于同济大学,主要方向是机器学习、深度学习、推荐算法研究以及量化。精通python、MATLAB,熟悉java、C++等编程语言,熟练掌握数据结构与算法、计算机网络,sklearn、XGboost、Tensorflow、pytorch、Keras等框架,分布式系统等。
展开
-
推荐算法——NCF知识总结代码实现
随着技术的发展,协同过滤相比深度学习模型的弊端就日益显现,因为它是通过直接利用非常稀疏的共现矩阵进行预测的,所以模型的泛化能力非常弱,遇到历史行为非常少的用户,就没法产生准确的推荐结果。虽然,可以通过矩阵分解算法增强它的泛化能力,但因为矩阵分解是利用非常简单的内积方式来处理用户向量和物品向量的交叉问题的,所以,它的拟合能力也比较弱。2017 年,新加坡国立的研究者就使用深度学习网络来改进了传统的协同过滤算法,取名 NeuralCF(神经网络协同过滤)。原创 2023-02-24 08:41:52 · 2614 阅读 · 4 评论 -
推荐算法—wide&deep原理知识总结代码实现
今天,总结一个在业界有着巨大影响力的推荐模型,Google 的 Wide&Deep。可以说,只要掌握了 Wide&Deep,就抓住了深度推荐模型这几年发展的一个主要方向。原创 2023-02-22 14:52:40 · 1583 阅读 · 0 评论 -
推荐算法之NeuralCF
NCF模型1. 从DeepLearning的角度审视MF模型2. NCF3. NeuralCF 模型的扩展,双塔模型4. NeuralCF的TensorFlow 实现最近在做一个图书推荐系统的比赛,之前只写了baseline,因为数据集只有用户id,图书id,和交互记录,没有用户基本属性,图书属性,以及上下文信息,所以自然而然想到NCF模型来继续做,所以把NCF核心的原理以及代码实现记录下来。1. 从DeepLearning的角度审视MF模型之前已经尝试了经典的推荐算法-协同过滤,以及矩阵分解技术,就原创 2021-11-25 15:16:19 · 1602 阅读 · 0 评论 -
LFM算法
推荐算法之LFM1. 什么是LFM算法1.1 案例分析1.2 计算公式:1.3 损失函数2. LFM算法的应用2.1 哪些参数的设定会影响最终的模型效果2.2 算法的应用场景3. LFM算法的优化1. 什么是LFM算法1.1 案例分析对于音乐,每一个用户都有自己的喜好,比如A喜欢带有小清新的、吉他伴奏的、王菲等元素(latent factor),如果一首歌(item)带有这些元素,那么就将这首歌推荐给该用户,也就是用元素去连接用户和音乐。每个人对不同的元素偏好不同,而每首歌包含的元素也不一样。所以,原创 2021-11-10 18:34:05 · 1456 阅读 · 0 评论 -
DeepFM模型原理与案例实现
DeepFM原创 2021-07-08 14:33:48 · 1306 阅读 · 0 评论 -
推荐算法之FM
推荐算法之FM1.模型原理2. 延伸2.1 对比MLP+Embedding2.2 领域信息Field3. FM的Tensorflow实现3. 参考1.模型原理FM出现之前的传统的处理方法是人工特征工程加上线性模型(如逻辑回归Logistic Regression)。为了提高模型效果,关键技术是找到到用户点击行为背后隐含的特征组合。如男性、大学生用户往往会点击游戏类广告,因此 “男性且是大学生且是游戏类” 的特征组合就是一个关键特征。但这本质仍是线性模型,其假设函数表示成内积形式一般为:ylinear=原创 2021-07-07 18:51:54 · 737 阅读 · 4 评论 -
Wide & Deep模型原理与案例实现
Wide & Deep原创 2021-07-06 23:53:14 · 1053 阅读 · 1 评论 -
经典推荐算法-协同过滤
协同过滤算法1.传统推荐模型的演化关系图2. 协同过滤2.1 什么是协同过滤2.2 计算用户相似度2.3 最终结果排序2.4 存在缺点2.5 ItemCF2.6 各自的应用场景1.传统推荐模型的演化关系图传统推荐模型发展脉络由以下几部分组成:协同过滤算法族逻辑回归模型族因子分解机模型族组合模型2. 协同过滤2.1 什么是协同过滤协同过滤算法,是一种完全依赖用户和物品之间行为关系的推荐算法。从它的名字“协同过滤”中,也可以窥探到它背后的原理,就是 “协同大家的反馈、评价和意见一起对海量原创 2021-03-23 18:01:17 · 1021 阅读 · 0 评论 -
YouTube深度学习视频推荐系统
YouTube深度学习视频推荐系统1. 推荐系统的应用场景2.YouTube 推荐系统架构3.候选集生成模型4. 候选集生成模型独特的线上服务方法5. 排序模型6. 训练和测试样本的处理7. 处理用户对新视频的爱好8. 总结1. 推荐系统的应用场景作为全球最大的视频分享网站,YouTube 平台中几乎所有的视频都来自 UGC(User Generated Content,用户原创内容),这样的内容产生模式有两个特点:一是其商业模式不同于 Netflix,以及国内的腾讯视频、爱奇艺这样的流媒体,这些流原创 2021-01-25 11:47:46 · 1180 阅读 · 3 评论 -
Embedding技术在推荐系统中的应用
Embedding技术1.什么是 Embedding?1.1 词向量的例子1.2 Embedding技术对于深度学习推荐系统的重要性2.word2vec——经典的Embedding方法2.1 什么是word2vec2.2 Word2vec的训练过程2.3 Word2vec的负采样训练方法3.Item2vec——Word2vec在推荐系统领域的推广到处都在谈Embedding,那么Embedding技术到底是什么呢?1.什么是 Embedding?Embedding 其实就是用一个低维稠密的数值向量“表原创 2021-01-14 16:51:08 · 381 阅读 · 1 评论 -
推荐中的矩阵分解
矩阵分解1.SVD 算法2.ALS 算法3.BPR算法1.SVD 算法2.ALS 算法3.BPR算法原创 2020-11-25 14:26:06 · 175 阅读 · 0 评论 -
近邻推荐
近邻推荐1.基于用户的协同过滤算法1.1 协同过滤算法1.2 基于用户的协同过滤算法原理1.2.1 原理1.2.2 实践1.3 应用场景2.基于物品的协同过滤算法2.1 常见应用场景2.2 算法原理3. 相似度算法3.1 相似度的本质3.2 相似度计算方法3.2.1 欧氏距离3.2.2 余弦相似度3.2.3 皮尔逊相关系数3.2.4 Jaccard相似度3.3 向量化计算1.基于用户的协同过滤算法1.1 协同过滤算法协同过滤算法与推荐系统的关系十分紧密,所以这是一个非常重要的算法。协同过滤算法是一个原创 2020-11-24 10:20:27 · 319 阅读 · 0 评论 -
推荐系统-内容推荐
内容推荐1.用户画像1.1 什么是用户画像3.1.2 关键因素3.1.3 构建方法2.标签挖掘技术3.基于内容的推荐3.1内容源3.2 内容分析3.3 内容推荐算法1.用户画像1.1 什么是用户画像首先推荐系统的使命就是要在用户和物品之间建立连接。一般方式就是对用户和物品之间的匹配进行评分,也就是预测用户评分或者偏好。推荐系统在对匹配进行评分前,首先要将用户和物品都表示成向量,这样才能进行计算。而采用的推荐算法不同,向量化的方式也不同,最终使用匹配评分的做法也会不同。用户向量化后的结果就是用户画像。原创 2020-11-18 15:04:04 · 805 阅读 · 0 评论 -
推荐系统的排序算法-树模型
推荐系统的排序算法-树模型01. 决策树1.1 决策树算法1.1.1决策树模型1.1.2 特征选择1.1.3 决策树的生成1.1.4 决策树的剪枝1.2 决策树的集成算法1.3 决策树集成算法案例2. 集成学习2.1 GBDT+LR主要包括决策树、随机森林(RF)、GBDT、GBDT+LR和深度森林。树模型的优点是可以通过有监督的方式进行特征的自动交叉和选择,也是集成学习中的常用方法或组成部分,树模型在工业界常用的方法有GBDT+LR和Xgboost。1. 决策树1.1 决策树算法决策树是随机森林原创 2020-09-17 17:25:45 · 2027 阅读 · 0 评论 -
推荐系统的排序算法-线性模型
推荐系统的排序算法-线性模型1. 逻辑回归1.1 逻辑回归算法1.2 逻辑回归算法实现2. 因子分解机FM推荐系统的排序算法,就是根据用户和物品的所有标签特征,通过排序模型计算,得到用户对候选物品集的评分。其中,在排序模块中使用的特征比召回模块中的复杂,目的是计算用户精确的预测值。工业界最常使用的方法是逻辑回归和FM。1. 逻辑回归逻辑回归(Logistics Regression,LR)是一种解决二分类问题的机器学习方法,用于获得某种事物的估计值。1.1 逻辑回归算法二元逻辑回归模型逻辑回归原创 2020-09-15 23:20:29 · 809 阅读 · 0 评论 -
推荐召回算法---协同过滤
推荐系统的召回算法1. 协同过滤---基于行为相似的召回1.1 协同过滤算法1.1.1 相似度计算1.1.2 推荐计算1.2 协同过滤推荐算法的实现1. 协同过滤—基于行为相似的召回要实现协同过滤,需要以下几个步骤:收集用户偏好找到相似的用户或物品计算并推荐1.1 协同过滤算法1.1.1 相似度计算在对用户的行为进行分析得到用户的偏好后,可以根据用户的偏好计算相似用户或相似物品,然后基于相似用户或相似物品进行推荐。即基于用户的协同过滤和物品的协同过滤。关于相似度的计算,现有的几种基本方原创 2020-09-09 22:53:22 · 526 阅读 · 0 评论 -
推荐系统实践总结
前一段时间再读项亮老师的《推荐系统实践》,做了个全书思维导图!需要xmind源文件的,直接找我要就行。读《推荐系统实践》项亮原创 2020-08-20 22:17:45 · 185 阅读 · 0 评论