背包问题

背包问题是线性dp的一种特殊模型 其主要问题分为以下几种

1.01背包问题

对于每种物品的状态只有拿或者不拿两种状态

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

#include <bits/stdc++.h>

using namespace std;

const int N = 1010;
/*
其中i表示选择物品个数 j表示容量 dp[i][j]表示当前i个物品容量为j的最大价值
*/
int dp[N][N];
int v[N],w[N];
int n,m;

int main()
{
    cin >> n >> m;

    for(int i=1;i<=n;i++)
        cin >> v[i] >> w[i];

    dp[0][0] = 0;

    ///i表示选择物品个数 j表示容量
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
            dp[i][j] = dp[i-1][j];///不拿这件物品

            if(j >= v[i])///如果体积允许
                dp[i][j] = max(dp[i][j],dp[i-1][j-v[i]]+w[i]);///从i-1的状态转移 进行相应更新
        }
    }

    int res = 0;

    for(int i=0;i<=m;i++)///取最大值
        res = max(res,dp[n][i]);

    cout << res  << '\n';
    return 0;
}

而我们可以发现 当前状态总是从上一个状态转移过来 可以省去i的维度

#include <bits/stdc++.h>

using namespace std;

const int N = 1005;

int v[N],w[N];
int dp[N];

int main()
{
    int n,m;

    cin >> m >> n;

    for(int i=1; i<=n; i++)
        cin >> v[i] >> w[i];

    ///i是物品数 j是体积容量
    for(int i = 1; i <= n; i ++)
    {
        for(int j = m; j >= v[i] ; j --)///注意这边是逆序遍历
        {
///           dp[i][j] = dp[i-1][j];
///            if(j >= v[i])
///                dp[i][j] = max(dp[i-1][j],dp[i-1][j-v[i]]+w[i]);
            ///  逆序遍历保证后者是 i-1 的状态由于v[i]>0 j-v[i]一定>0 一定没有被算过 
            ///  所以当前状态一定不包括i的状态
            dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
        }
    }

    /// 求恰好体积为m的价值时 将dp[0] = 0 其余赋值成-INF
    cout << dp[m] << '\n';

    return 0;
}

2.完全背包

相对于01背包 每个物品可以拿无限次 即 0~无穷大

在01背包中 逆序遍历是保证更新这轮的状态时用的上一轮状态的基础 然而完全背包可以取任意次 不用强求上一轮的状态 也就是这一轮用过的东西 后面可以继续用

#include <bits/stdc++.h>

using namespace std;

const int N = 1005;

int v[N],w[N];
int n,m;

int dp[N];

int main()
{
    cin >> n >> m;

    for(int i=1;i<=n;i++)
        cin >> v[i] >> w[i];

    for(int i = 1;i <= n;i ++)
    {
        for(int j = v[i];j <= m;j ++)
        {
            dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
        }
    }

    cout << dp[m] << '\n';

    return 0;
}

3.多重背包

相对于01背包 每件物品有了物品数s 所以选取的范围在 【0,s】中 所以你选择的方法就有了 s+1种 在01背包的基础上 遍历每种情况即可

#include <bits/stdc++.h>

using namespace std;

const int N = 1005;

int n,m;

int dp[N];

int main()
{
    cin >> n >> m;

    int v,w,s;

    for(int i=1;i<=n;i++)
    {
        cin >> v >> w >> s;

        for(int j = m;j >= 0;j --)
        {
            for(int k = 0;k <= s && v*k <= j ; k ++)///遍历s+1种情况 v*k <= j 判断体积是否超过
            {
                dp[j] = max(dp[j],dp[j-k*v]+k*w);
            }
        }
    }

    cout << dp[m] << '\n';

    return 0;
}

但是 这样的复杂度来到了 O(nms) 面对数据范围大时是不能接受的

这边有个基础知识 任意一个数n以内的数字都可以用 0~log2n的数来表示 举个例子
log7 = 2 所以7以内的数字都可以用 2的 0~2次方表示
1 = 2^0
2 = 2^1
5 = 2^0+2 2

所以这样可以使用二进制优化 将复杂度降至 O(nmlogs)

#include <bits/stdc++.h>

using namespace std;

int n,m;

struct node
{
    int v,w;
};

vector <node> vec;

int dp[2005];

int main()
{
    cin >> n >> m;

    int v,w,s;

    for(int i=1;i<=n;i++)
    {
        cin >>  v >> w >> s;

        for(int k = 1;k <= s;k *= 2)///二进制拆分
        {
            s -= k;
            vec.push_back({v*k,w*k});///存入种类数中
        }

        if(s > 0)///如果有剩余
            vec.push_back({s*v,w*s});
    }


    for(auto i:vec)///遍历种类数组 跑01背包
        for(int j=m;j>=i.v;j--)
          dp[j] = max(dp[j],dp[j-i.v]+i.w);

    cout << dp[m] << '\n';
    
    return 0;
}

还有一种单调队列优化 不好意思 我不会

4.混合背包

第一类物品只能用1次(01背包);
第二类物品可以用无限次(完全背包);
第三类物品最多只能用 si次(多重背包);
顾名思义 然后用将多重背包转换成01背包 就只有01背包和完全背包两种情况 分别处理即可

si=−1 表示第 i 种物品只能用1次;
si=0 表示第 i 种物品可以用无限次;
si>0 表示第 i 种物品可以使用 si 次;

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

const int N = 1005;

struct node
{
    int kind;
    int v,w;
};

vector <node> vec;

int dp[N];

int main()
{
    int n,m;

    cin >> n >> m;

    for(int i=0; i<n; i++)
    {
        int v,w,s;
        cin >> v >> w >> s;

        if(s < 0)
            vec.push_back({-1,v,w});
        else if(s == 0)
            vec.push_back({0,v,w});
        else
        {
            for(int k=1; k<=s; k*=2)
            {
                s -= k;
                vec.push_back({-1,v*k,w*k});
            }

            if(s > 0)
                vec.push_back({-1,v*s,w*s});
        }
    }

    for(auto it : vec)
    {
        if(it.kind == 0)
        {
            for(int j=it.v;j<=m;j++)
                dp[j] = max(dp[j],dp[j-it.v]+it.w);
        }
        else
        {
            for(int j=m;j>=it.v;j--)
            {
                dp[j] = max(dp[j],dp[j-it.v]+it.w);
            }
        }
    }

    cout << dp[m] << '\n';

    return 0;
}

5.二维费用的背包问题

多了一个限制条件那么也多了一个维度

有 N 件物品和一个容量是 V 的背包,背包能承受的最大重量是 M。

每件物品只能用一次。体积是 vi,重量是 mi,价值是 wi。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,总重量不超过背包可承受的最大重量,且价值总和最大。
输出最大价值。

#include <iostream>

using namespace std;

const int N = 105;

int n,m,v;

int dp[N][N];

int main()
{
    cin >> n >> v >> m;

    for(int i=1;i<=n;i++)
    {
        int a,b,c;
        cin >> a >> b >> c;

        for(int j=v;j>=a;j--)///体积
        {
            for(int k=m;k>=b;k--)///重量
            {
                dp[j][k] = max(dp[j][k],dp[j-a][k-b]+c);
            }
        }
    }

    cout << dp[v][m] << '\n';

    return 0;
}

6.有依赖的背包问题

这种题目由于物品之间的依赖关系可构成一个二叉树 所以可以采用树状dp 但对于某些特殊情况 我们也可以采用将其转化成01背包解决

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件

附件

电脑

打印机,扫描仪

书柜

图书

书桌

台灯,文具

工作椅

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:

v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]w[jk]。(其中为乘号)

请你帮助金明设计一个满足要求的购物单。

这题主件是固定的 附件的数量也是比较少 可以采用结构体来封装信息 跑01背包即可
之后大力讨论 只选主件 选主件+附件1 选主件+附件2 选主件+附件1+附件2 这四种情况

#include <bits/stdc++.h>

using namespace std;

int dp[32005];
int n,m;

struct node
{
    int v1,w1,v2,w2,v3,w3;
}a[1005];

int main()
{
    cin >> m >> n;

    for(int i = 1;i <= n;i ++)
    {
        int v,p,q;

        cin >> v >> p >> q;

        if(!q)
            a[i].v1 = v,a[i].w1 = p*v;
        else if(!a[q].v2)
            a[q].v2 = v,a[q].w2 = p*v;
        else
            a[q].v3 = v,a[q].w3 = p*v;
    }


    for(int i = 1;i <= n;i ++)
    {
        for(int j = m;j >= 0;j --)
        {
            if(j >= a[i].v1)
                dp[j] = max(dp[j], dp[j - a[i].v1] + a[i].w1);
            if(j >= a[i].v1+a[i].v2)
                dp[j] = max(dp[j], dp[j - a[i].v1 - a[i].v2] + a[i].w1 + a[i].w2);
            if(j >= a[i].v1+a[i].v3)
                dp[j] = max(dp[j], dp[j - a[i].v1 - a[i].v3] + a[i].w1 + a[i].w3);
            if(j >= a[i].v1 + a[i].v2 + a[i].v3)
                dp[j] = max(dp[j], dp[j - a[i].v1 - a[i].v2 - a[i].v3] + a[i].w1 + a[i].w2 + a[i].w3);
        }
    }

    cout << dp[m] << '\n';

    return 0;
}

7.分组背包问题

大力讨论每组全部情况即可

有 NN 组物品和一个容量是 VV 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vijvij,价值是 wijwij,其中 ii 是组号,jj 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N,VN,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 NN 组数据:

每组数据第一行有一个整数 SiSi,表示第 ii 个物品组的物品数量;
每组数据接下来有 SiSi 行,每行有两个整数 vij,wijvij,wij,用空格隔开,分别表示第 ii 个物品组的第 jj 个物品的体积和价值;
输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000<N,V≤100
0<Si≤1000<Si≤100
0<vij,wij≤100

#include <iostream>

using namespace std;

const int N = 105;

int n,m;

int dp[N];
int v[N],w[N];

int main()
{
    cin >> n >> m;

    int s;

    for(int i=0;i<n;i++)
    {
        cin >> s;

        for(int j=0;j<s;j++)
            cin >> v[j] >> w[j];

        for(int j=m;j >= 0;j--)
        {
            for(int k=0;k<s;k++)
            {
                if(j >= v[k])
                   dp[j] = max(dp[j],dp[j-v[k]]+w[k]);
            }
        }
    }


    cout << dp[m]<< '\n';

    return 0;
}

8.背包问题求方案数

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出 最优选法的方案数。注意答案可能很大,请输出答案模 109+7109+7 的结果。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。

输出格式

输出一个整数,表示 方案数 模 1e9+7 的结果。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤1000

在跑01背包的过程中 同时维护一个 ans数组 来保存方案数

#include <iostream>

using namespace std;

const int N = 1005;
const int mod = 1e9+7,INF = 0x3f3f3f3f;

int n,m;
int dp[N],ans[N];
int v[N],w[N];

int main()
{
    cin >> n >> m;

/// 初始化方式
    ans[0] = 1;
/// dp[0] = 0
    for(int i = 1;i <= m ; i ++)
        dp[i] = -INF;

    for(int i = 0;i < n ; i ++)
    {
        int v,w;

        cin >> v >> w;

        for(int j = m; j >= v; j --)
        {
            int temp = max(dp[j],dp[j-v]+w);
            int s = 0;

            if(temp == dp[j]) /// 如果和之前状态相同的话 就加上对应状态的方案数
                s += ans[j];
            if(temp == dp[j-v]+w)
                s += ans[j-v];

            s %= mod;

            dp[j] = temp; ///更新
            ans[j] = s;
        }
    }

    int maxx = 0;

    for(int i = 0 ;i <= m ; i ++) ///找到最大价值
        maxx = max(maxx,dp[i]);


    int res = 0;
    for(int i = 0; i <= m ; i++)///累计能实现最大价值的方案数
    {
        if(maxx == dp[i])
        {
            res += ans[i];

            res %= mod;
        }
    }

    cout << res << '\n';
    return 0;
}

上面的初始化方式为使用 dp[0] = 0 其余均赋值成-INF 这也是求体积恰好为m的最大价值 ans[0] = 1 其余均是0
还有一种将ans全部赋值为1 则 ans[m] 就是答案

#include <iostream>

using namespace std;

const int N = 1005;
const int mod = 1e9+7,INF = 0x3f3f3f3f;

int n,m;
int dp[N],ans[N];
int v[N],w[N];

int main()
{
    cin >> n >> m;

    fill(ans,ans+N,1);

    for(int i = 0;i < n ; i ++)
    {
        int v,w;

        cin >> v >> w;

        for(int j = m; j >= v; j --)
        {
            int temp = max(dp[j],dp[j-v]+w);
            int s = 0;

            if(temp == dp[j])
                s += ans[j];
            if(temp == dp[j-v]+w)
                s += ans[j-v];

            s %= mod;

            dp[j] = temp;
            ans[j] = s;
        }
    }

    cout << ans[m]%mod << '\n';
    
    return 0;
}

9.背包问题求方案

有 NN 件物品和一个容量是 VV 的背包。每件物品只能使用一次。

第 ii 件物品的体积是 vivi,价值是 wiwi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出 字典序最小的方案。这里的字典序是指:所选物品的编号所构成的序列。物品的编号范围是 1…N1…N。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。

输出格式

输出一行,包含若干个用空格隔开的整数,表示最优解中所选物品的编号序列,且该编号序列的字典序最小。

物品编号范围是 1…N1…N。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤1000

菜鸡表示这我不太会

#include <iostream>

using namespace std;

const int N = 1005;

int n,m;
int v[N],w[N];
int dp[N][N];

int main()
{
    cin >> n >> m;

    for(int i = 1; i <= n ;i ++)
        cin >> v[i] >> w[i];

    for(int i = n;i >= 1;i --)///从n开始选择
    {
        for(int j = 0;j <= m;j ++)
        {
            dp[i][j] = dp[i+1][j];

            if(j >= v[i])
                dp[i][j] = max(dp[i][j],dp[i+1][j-v[i]]+w[i]);
        }
    }

    int x = m;

    for(int i = 1; i <= n; i ++)
    {
        if(x >= v[i] && dp[i][x] == dp[i+1][x-v[i]]+w[i])
        {
            cout << i << ' ';
            x -= v[i];
        }
    }

    return 0;
}

感谢各位大佬看菜鸡我的博客 有疑惑或者问题还望指出 ~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值