An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constr

本文关注柔性作业车间调度问题,考虑了加工时间、准备时间和运输时间。提出了一种改进遗传算法,采用多种策略生成初始解并设计了高效的交叉和变异算子以加速收敛和提高解质量。实验表明该算法能有效减少最大完成时间、总运输时间和总准备时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints(一种改进遗传算法解决多时间约束柔性作业车间调度问题)

1、介绍

柔性作业车间调度问题是工厂调度中一个非常重要的问题。现有的研究大多只考虑了每项作业的处理时间,而下一项作业往往需要将作业转移到另一台机器上进行处理,而下一项作业往往需要进行准备。 此外,与这些步骤相关的时间增加了这个问题的复杂性。 本文解决了包含加工时间、准备时间和运输时间的柔性作业调度问题。

问题描述如下: N个作业需要在M台机器上处理,每个作业可以包含一个或多个操作。每个操作只能由一台机器进行,即操作任选机组中的任何一台机器。 当作业的一个操作完成时,它将被转移到下一个操作。如果两个相邻作业使用同一台机器,则无需考虑运输时间。 如果加工机的两个相邻操作是相同的(即,做相同的事情),就不需要考虑准备时间。

选择合适的机器对不同的工件进行不同的加工,合理安排工件的顺序,可以减少工件的最大完成时间、工件总运输时间和总准备时间。

本文将加工时间、运输时间和安装时间作为FJSP的独立时间因素。提出了一种改进的遗传算法来解决这一问题。 为了加快收敛速度,提高解的质量,我们采用了三种不同的方法生成初始解,既提高了初始解的质量,又保持了初始解的多样性。 在遗传算子阶段,我们设计了更有效的交叉算子和变异算子,前者是通过人工交叉配对进行交叉,后者是通过自适应权值法获取变异概率和邻域搜索范围

2、问题定义

  1. 每台机器一次只能进行一种操作。
  2. 同一作业只能由一台机器在同一时间处理,并且一旦该作业开始处理,该过程就不能中断。
  3. 每个作业的处理顺序都有自己的顺序。也就是说,每次操作完成后,它会被发送到选择进行下一个操作的机器上。
  4. 加工时间因所选机器而异。处理时间是已知的。
  5. 当同一作业在不同机器上的两个相邻工序之间进行时,运输时间随工序所使用的机器而变化,运输时间已知。如果在同一台机器上连续加工同一工件的两个工序,则运输时间为0。
  6. 不同的操作有不同的准备时间,因为所选的加工机器是已知的。如果一个作业的两个进程在同一台机器上连续处理,则准备时间为0。

 

3、算法

编码

 

 

4、实验

### 关于PUMA改进的DOA估计算法模式实现 针对PUMA改进的DOA估计算法模式实现,该方法旨在提高传统MODE算法在方向到达角(DOA)估计中的性能。具体而言,通过引入新的机制来增强参数估计精度和稳定性[^1]。 以下是基于MATLAB的一个简化版本代码示例,用于展示如何利用PUMA框架进行DOA估算: ```matlab function doa_estimates = puma_do aestimation(received_signals, array_geometry) % Parameters initialization num_elements = size(array_geometry, 2); snapshot_length = length(received_signals(:, 1)); % Construct spatial correlation matrix Rxx from received signals Rxx = (received_signals * conj(transpose(received_signals))) / snapshot_length; % Perform eigenvalue decomposition on Rxx to get eigenvectors U and eigenvalues Lambda [U, ~] = eig(Rxx); % Define search grid for DOAs within [-90°,+90°], step=1° theta_grid = linspace(-pi/2, pi/2, 181)'; % Calculate steering vectors a(theta) corresponding to each angle in the grid A = exp(1i*2*pi*(array_geometry'*sin(theta_grid))); % Compute PUMA cost function values over all angles using modified MODE criterion J_puma = zeros(size(theta_grid)); for k = 1:length(theta_grid), ak = A(:,k); P = eye(num_elements)-ak*(conj(ak')/(ak'*ak))*ak'; J_puma(k)=trace(P*Rxx*P'); end % Find peaks of the spectrum which correspond to estimated DOAs [~, peak_indices] = findpeaks(-J_puma,'MinPeakDistance',5); doa_estimates = radtodeg(theta_grid(peak_indices)); end ``` 此函数`puma_do aestimation`接收两个输入参数:一个是来自阵列天线接收到的数据矩阵;另一个是指定传感器位置坐标的向量。输出则是检测到的目标角度列表(单位为度)。注意这只是一个概念性的例子,在实际应用中可能还需要考虑更多细节调整以适应特定场景需求[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值