
AI/AGI
本专栏,主要分享人工智能和通用人工智能领域综合性文章,包括机器学习、深度学习、迁移学习、强化学习等综述性文章。
一个处女座的程序猿
人工智能硕博生,拥有十多项发明专利(6项)和软著(9项),包括SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN社区/51CTO/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等(开发者社区)采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万。正在撰写《AI算法最新实战》一书,目前已43万字
展开
-
NLP:自然语言处理领域技术的发展史—有监督模型没落、无监督模型兴起(词向量发展史+预训练语言模型/自监督学习)、神经网络算法对比(BP/W2C/PTM)的兴起之详细攻略
NLP:自然语言处理领域技术的发展史—有监督模型没落、无监督模型兴起(词向量发展史+预训练语言模型/自监督学习)、神经网络算法对比(BP/W2C/PTM)的兴起之详细攻略目录1、传统有监督模型的没落:标签成本高/泛化能力低2、无监督模型的兴起(神经网络/深度学习时代)1、传统有监督模型的没落:标签成本高/泛化能力低简介传统的NLP模型往往使用大量的数据对有监督的模型进行任务相关的模型训练,但是这种有监督学习的任务存在两个缺点:两大缺点(1)、标签成本高原创 2023-06-08 00:35:16 · 36 阅读 · 0 评论 -
LLMs:自然语言处理领域—大语言模型的涉及四大技术领域(TL/USL/PT+Fine/Seq2Seq)、十大核心组件之详细攻略
LLMs:自然语言处理领域—大语言模型的涉及四大技术领域(TL/USL/PT+Fine/Seq2Seq)、十大核心组件之详细攻略目录LLMs涉及技术领域的简介LLMs的十大核心组件LLMs涉及技术领域的简介1、迁移学习:特征提取、微调有两种常见的迁移学习方式:特征提取和微调,如下所示特征提取以ELMo等为代表的模型使用的特征提取方法冻结了预训练参数;微调而以 BERT等为代表的模型采用的微调则是动态地改变参数,根据下原创 2023-06-07 01:29:15 · 437 阅读 · 1 评论 -
NVIDIA之NCCL:NCCL的简介、安装、使用方法之详细攻略
NVIDIA之NCCL:NCCL的简介、安装、使用方法之详细攻略目录NCCL的简介NCCL的安装NCCL的使用方法NCCL的案例应用NCCL的简介NCCL(NVIDIA Collective Communications Library)是由 NVIDIA 开发的一种高性能的多 GPU 通信库,用于在多个 NVIDIA GPU 之间实现快速的数据传输和协同计算。它可以在深度学习和高性能计算领域中提供分布式训练和数据并行加速的支持。NCCL实现了针对NVI原创 2023-06-02 00:54:50 · 549 阅读 · 0 评论 -
LLMs:《Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca》翻译与解读
LLMs:《Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca》翻译与解读目录《Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca》翻译与解读ABSTRACT1、INTRODUCTION2、Chinese Llama3、Chinese Alpaca4、Parameter Efficient Fine-Tuning原创 2023-06-01 23:41:35 · 614 阅读 · 0 评论 -
Paper:《Is GPT-4 a Good Data Analyst?GPT-4是一个好的数据分析师吗?》翻译与解读
Paper:《Is GPT-4 a Good Data Analyst?GPT-4是一个好的数据分析师吗?》翻译与解读目录《Is GPT-4 a Good Data Analyst?GPT-4是一个好的数据分析师吗?》翻译与解读Abstract摘要1、Introduction引言2、RelatedWork相关工作3、TaskDescription任务描述4、Our Framework我们的框架5、Experiments实验6、CaseSt原创 2023-05-30 01:13:22 · 900 阅读 · 0 评论 -
NLP:自然语言处理领域技术的发展史—PTM预训练大模型(LLMs+多模态)的简介(2017~2022年大模型领域各个算法的诞生时间/参数量/机构/功能/特点,图表形式)之详细攻略
NLP:自然语言处理领域技术的发展史—PTM预训练大模型(LLMs+多模态)的简介(2017~2022年大模型领域各个算法的诞生时间/参数量/机构/功能/特点,图表形式)之详细攻略目录PTM大模型领域各个算法的总结(诞生时间/参数量/机构/功能/特点)——图表形式一、图视化形式——折线图等二、表格形式PTM大模型领域各个算法的总结(诞生时间/参数量/机构/功能/特点)——图表形式在大模型的赛道上,算力公司、算法公司、数据公司,研究机构正在展开新一轮竞赛。国内外AI头部公原创 2019-01-16 21:36:01 · 8135 阅读 · 1 评论 -
AI:人工智能应用领域场景中处理时序序列性数据常用算法之基于神经网络算法(对比CNN/RNN/Transformer算法优劣)的简介、案例应用之详细攻略
AI:人工智能应用领域场景中处理时序序列性数据常用算法之基于神经网络算法(对比CNN/RNN/Transformer算法优劣)的简介、案例应用之详细攻略目录AI算法中,如何处理时序性数据—对比CNN、RNN、Transformer算法优劣AI算法中,如何处理时序性数据—对比CNN、RNN、Transformer算法优劣比如,存在这样一个时序性数据,“他欠我100万”,和“我欠他100万”,两者的意思千差万别对比RNN和CNN算法特点适应场景CNN提取的是局部原创 2023-02-05 23:13:29 · 803 阅读 · 0 评论 -
DL:基于神经网络的深度学习模型的总概览简介(DNN/CNN/RNN等)、各种网络结构对比、案例应用对比之详细攻略
DL:基于神经网络的深度学习模型的总概览简介(DNN/CNN/RNN等)、各种网络结构对比、案例应用对比之详细攻略目录神经网络所有模型的简介(概览)相关文章DL:深度学习算法(神经网络模型集合)概览之《THE NEURAL NETWORK ZOO》的中文解释和感悟(一)DL:深度学习算法(神经网络模型集合)概览之《THE NEURAL NETWORK ZOO》的中文解释和感悟(二)DL:深度学习算法(神经网络模型集合)概览之《THE NEURAL NETWORK ZOO》的中文解释原创 2019-02-21 22:25:23 · 9669 阅读 · 1 评论 -
Competition:Kaggle竞赛平台的简介(比赛任务/常用数据集)、使用方法(Kaggle上比赛操作流程案例)、比赛经验(案例理解)之详细攻略
Competition:Kaggle竞赛平台的简介(比赛任务/常用数据集)、使用方法(Kaggle上比赛操作流程案例)、比赛经验(案例理解)之详细攻略目录Kaggle竞赛平台的简介Kaggle竞赛平台的使用方法(了解如何在Kaggle上进行比赛)Kaggle竞赛平台的实战案例Kaggle竞赛平台的简介 Kaggle是一个知名的在线数据科学竞赛平台,吸引了全球的数据科学家和机器学习爱好者。Kaggle竞赛的特点是竞赛难度大、原创 2019-03-13 12:12:49 · 906 阅读 · 1 评论 -
AIGC之LLaMA:《LLaMA: Open and Efficient Foundation Language Models》翻译与解读
AIGC之LLaMA:《LLaMA: Open and Efficient Foundation Language Models》翻译与解读目录《LLaMA: Open and Efficient Foundation Language Models》翻译与解读Abstract1、Introduction2、Approach3 Main results主要结果4 Instruction Finetuning指令微调5 Bias,原创 2023-03-25 17:52:45 · 899 阅读 · 0 评论 -
LLMs之Alpaca:《Alpaca: A Strong, Replicable Instruction-Following Model》翻译与解读
LLMs之Alpaca:《Alpaca: A Strong, Replicable Instruction-Following Model》翻译与解读目录《Alpaca: A Strong, Replicable Instruction-Following Model》翻译与解读Overview概述Training recipe训练方法Preliminary evaluation初步评估Assets released发布的资源Release decision发布决策F原创 2023-03-26 01:48:51 · 890 阅读 · 1 评论 -
LLMs之Vicuna:《Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality》翻译与解读
LLMs之Vicuna:《Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality》翻译与解读目录《Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality》翻译与解读How Good is Vicuna?Vicuna-13B的性能有多好?Online Demo在线演示Overview概述Ho原创 2023-05-25 22:24:49 · 874 阅读 · 0 评论 -
NLP之LLMs:《Zeno Chatbot Report》的翻译与解读—CMU副教授详测七款个类ChatGPT大模型(GPT-2、LLaMa、Alpaca、Vicuna、MPT-Chat、Coher
NLP之LLMs:《Zeno Chatbot Report》的翻译与解读—CMU副教授详测七款个类ChatGPT大模型(GPT-2、LLaMa、Alpaca、Vicuna、MPT-Chat、Cohere Command和ChatGPT)目录《Zeno Chatbot Report》的翻译与解读—CMU副教授详细测评七款个类ChatGPT大模型Overview概览Setup设置Results结果How well do models perform overall?模型整体表现原创 2023-05-25 22:17:39 · 832 阅读 · 0 评论 -
CV:计算机视觉技最强学习路线之CV简介(传统视觉技术/相关概念)、早期/中期/近期应用领域(偏具体应用)、经典CNN架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装、常用数据集、编程技巧
CV:计算机视觉技最强学习路线之CV简介(传统视觉技术/相关概念)、早期/中期/近期应用领域(偏具体应用)、经典CNN架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装、常用数据集、编程技巧目录最新文章计算机视觉技最强学习路线☆☆一、计算机视觉的简介☆☆二、计算机视觉相关概念简介☆☆三、传统的计算机视觉技术之机器视觉/计算机图形学原创 2022-10-18 01:51:04 · 51887 阅读 · 14 评论 -
ML:PAC(Probably Approximately Correct可能近似正确)学习框架的简介、使用方法之详细攻略
ML:PAC(Probably Approximately Correct可能近似正确)学习框架的简介、使用方法之详细攻略目录PAC学习框架的简介PAC(Probably Approximately Correct可能近似正确)学习框架的概述PAC学习框架的简介PAC(Probably Approximately Correct可能近似正确)学习框架的概述简介PAC(Probably Approximately Correct)学习是一个学习框架,用于分析学习原创 2023-05-08 23:55:37 · 640 阅读 · 0 评论 -
AIGC:ColossalChat(基于LLM和RLHF技术的类似ChatGPT的聊天机器人)的简介、安装、使用方法之详细攻略
AIGC:ColossalChat(基于LLM和RLHF技术的类似ChatGPT的聊天机器人)的简介、安装、使用方法之详细攻略目录ColossalChat的简介ColossalChat的安装ColossalChat的使用方法ColossalChat的简介 ColossalChat于2023年3月28日发布(目前GitHub已获得29.2k个star,仍在持续更新),它是一个使用LLM和RLHF技术实现的聊天机器人项目,由Colossal-A原创 2023-05-06 23:01:32 · 1842 阅读 · 1 评论 -
NLP:palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介、安装、使用方法之详细攻略
NLP:palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介、安装、使用方法之详细攻略目录palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介palm-rlhf-pytorc的安装palm-rlhf-pytorc的使用方法palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介 palm-rlhf-pytorch是基于PaLM架构的RLHF(人原创 2023-04-22 10:34:51 · 1314 阅读 · 0 评论 -
AutoML:人工智能领域-自动化技术之机器学习自动化技术的简介(预处理→设计算法→训练模型→优化参数)、常用的工具或框架之详细攻略
AutoML:人工智能领域-自动化技术之机器学习自动化技术的简介(预处理→设计算法→训练模型→优化参数)、常用的工具或框架之详细攻略目录自动化机器学习技术的简介自动化机器学习技术常用的工具或框架自动化机器学习技术的简介1、自动化机器学习(预处理→设计算法→训练模型→优化参数)的概述痛点最初的设想来源于研究人员发现,机器学习模型开发实践中通常会消耗大量时间在特征工程、模型选择与超参数调优上。如果能够自动化这个流程,必将大原创 2023-03-26 14:24:22 · 475 阅读 · 0 评论 -
AI之AutoML:Auto-Keras/autokeras的简介、安装、使用方法之详细攻略
AI之AutoML:Auto-Keras/autokeras的简介、安装、使用方法之详细攻略目录Auto-Keras/autokeras的简介Auto-Keras/autokeras的安装Auto-Keras/autokeras的使用方法Auto-Keras/autokeras的简介简介Auto-Keras是由Haifeng Jin等人在2018年提出的一种自动机器学习框架。它基于Keras框架,可以自动搜索适合数据集的神经网络结构、调整超参数,并选择最优模型。Auto-Ke原创 2018-05-07 22:24:44 · 14091 阅读 · 1 评论 -
AI之AutoML:H2OAutoML(H2O公司开发)的简介、安装、使用方法之详细攻略
AI之AutoML:H2OAutoML(H2O公司开发)的简介、安装、使用方法之详细攻略目录H2OAutoML(H2O公司开发)的简介H2OAutoML的安装H2OAutoML的使用方法H2OAutoML(H2O公司开发)的简介简介H2O AutoML是H2O.ai公司开发的自动机器学习工具,于2017年正式发布,它用于自动化机器学习模型开发流程,包括特征工程、模型选择、超参优化等。H2O.ai是一家美国人工智能公司,由SriSatish Ambati、Sri Amb原创 2018-05-15 22:50:53 · 10139 阅读 · 1 评论 -
AI之AutoML:autosklearn/Auto-Sklearn(基于scikit-learn库的自动化的机器学习工具)的简介、安装、使用方法之详细攻略
AI之AutoML:autosklearn/Auto-Sklearn(基于scikit-learn库的自动化的机器学习工具)的简介、安装、使用方法之详细攻略目录autosklearn/Auto-Sklearn的简介autosklearn/Auto-Sklearn的安装autosklearn/Auto-Sklearn的使用方法autosklearn/Auto-Sklearn的简介autosklearn/Auto-Sklearn(基于scikit-learn库的自动化的机器学习工原创 2018-11-05 22:47:17 · 21919 阅读 · 1 评论 -
XAI之ALE:基于titanic泰坦尼克数据集对RF算法利用ALE累积局部效应图可视化算法进而实现模型可解释性案例
XAI之ALE:基于titanic泰坦尼克数据集对RF算法利用ALE累积局部效应图可视化算法进而实现模型可解释性案例目录基于titanic泰坦尼克数据集对RF算法利用ALE累积局部效应图可视化算法进而实现模型可解释性案例# 1、定义数据集# 2、特征工程/数据预处理# 3、模型训练与评估# 4、模型可解释性相关文章XAI之ALE:基于titanic泰坦尼克数据集对RF算法利用ALE累积局部效应图可视化算法进而实现模型可解释性案例XAI之ALE:基于tit原创 2021-03-22 23:34:30 · 697 阅读 · 0 评论 -
AI之Merlin:Merlin(一款使用ChatGPT和GPT-4的简单且免费的工具)的简介、安装、使用方法之详细攻略
AI之Merlin:Merlin(一款使用ChatGPT和GPT-4的简单且免费的工具)的简介、安装、使用方法之详细攻略目录Merlin的简介(一款使用ChatGPT和GPT-4的简单且免费的工具)Merlin的安装Merlin的使用方法Merlin的简介(一款使用ChatGPT和GPT-4的简单且免费的工具) ChatGPT扩展在秒内完成任何网站上的任何任务。Merlin是使用ChatGPT的简单和更好的方法。只需点击Cmd+M,全球60多万用户信赖。Mer原创 2023-04-16 10:25:13 · 3248 阅读 · 0 评论 -
AIGC:利用多个AI技术前沿模型(GPT-3.5/GPT-4/Claude/ForefrontChat/HuggingChat)实现文本理解、生成文本类/图片类的结果对比并分析性能案例集合
AIGC:利用多个AI技术前沿模型(GPT-3.5/GPT-4/Claude/ForefrontChat/HuggingChat)实现文本理解、生成文本类/图片类的结果对比并分析性能案例集合目录文本理解生成图片类案例文本理解1、理解语境中的术语含义Every data scientist is a model specialist. I’m not talking about Giselle Bundchen. I mean creating a model o原创 2023-04-17 00:29:07 · 1153 阅读 · 1 评论 -
ML之VC维:VC维(Vapnik-Chervonenkis Dimension)理论的概述(衡量模型复杂度和预测能力的指标)的简介、案例理解之详细攻略
ML之VC维:VC维(Vapnik-Chervonenkis Dimension)理论的概述(衡量模型复杂度和预测能力的指标)的简介、案例理解之详细攻略目录VC维(Vapnik-Chervonenkis Dimension)理论的简介VC维(Vapnik-Chervonenkis Dimension)理论的概述(衡量模型复杂度和预测能力的指标,但VC维理论目前已被边缘化)案例理解如何计算VC维的大小VC维(Vapnik-Chervonenkis Dimension原创 2018-03-28 17:38:51 · 11666 阅读 · 1 评论 -
AI:DeepSpeed Chat(一款帮用户训练自己模型的工具且简单/低成本/快 RLHF 训练类ChatGPT高质量大模型)的简介、安装、使用方法之详细攻略
AI:DeepSpeed Chat(一款帮用户训练自己模型的工具且简单/低成本/快 RLHF 训练类ChatGPT高质量大模型)的简介、安装、使用方法之详细攻略目录DeepSpeed Chat的简介DeepSpeed Chat的安装和使用方法DeepSpeed Chat的使用方法DeepSpeed Chat的简介DeepSpeed-Chat的产生背景 ChatGPT 之类的模型席卷了 AI 世界,可以毫不夸张地说它对数字世界的影响是革命性的。这些模原创 2023-04-15 13:29:03 · 7348 阅读 · 0 评论 -
AI之JARVIS:JARVIS(连接众多 AI 模型以解决复杂 AI 任务的接口/可理解为一种超智能AI模型管家,正开发中)的简介、安装、使用方法之详细攻略
AI之JARVIS:JARVIS(连接众多 AI 模型以解决复杂 AI 任务的接口/可理解为一种超智能AI模型管家,正开发中)的简介、安装、使用方法之详细攻略目录JARVIS(一种超智能AI模型管家)的简介JARVIS(一种超智能AI模型管家)的安装JARVIS(一种超智能AI模型管家)的使用方法JARVIS(一种超智能AI模型管家)的简介语言作为 LLM 连接众多 AI 模型以解决复杂 AI 任务的接口。JARVIS(引入了一个协作系统,该系统由作为控制器的 LLM原创 2023-04-15 09:26:02 · 831 阅读 · 0 评论 -
AI:大模型领域最新算法SOTA总结、人工智能领域AI工具产品集合分门别类(文本类、图片类、编程类、办公类、视频类、音频类、多模态类)的简介、使用方法(持续更新)之详细攻略
AI:大模型领域最新算法SOTA总结、人工智能领域AI工具产品集合分门别类(文本类、图片类、编程类、办公类、视频类、音频类、多模态类)的简介、使用方法(持续更新)之详细攻略目录大模型领域最新算法SOTA总结AI工具合集综合国内外网友提供的AI工具集导航栏(请网友自行鉴别网址安全性)大模型领域最新算法SOTA总结1、大型语言模型领域最新模型概述NLP之LLMs:大型语言模型领域最新模型的简介、各种维度对比(模型参数/原创 2023-04-13 23:43:22 · 21811 阅读 · 4 评论 -
NLP:自然语言处理技术领域的代表性算法概述(技术迭代路线图/发展时间路线)、四大技术范式变迁概述(统计时代→大模型时代)、四个时代的技术方法论探究之详细攻略daiding已全部迁移
NLP:自然语言处理技术领域的代表性算法概述(技术迭代路线图/发展时间路线)、四大技术范式变迁概述(统计时代→大模型时代)、四个时代的技术方法论探究(少数公司可承担的训练成本原因)之详细攻略目录一、NLP代表性算法的简介二、NLP技术范式的变迁三、NLP技术四个时代的技术方法论探究一、NLP代表性算法的简介1.1、NLP代表性算法技术迭代图文路线NNLM → Word2Vec → Seq2Seq → Seq2Seq with At原创 2023-03-27 01:18:19 · 1749 阅读 · 0 评论 -
AGI:人工智能大模型领域实战篇—设计一个类似GPT-3.5/GPT-4的大模型从开发→部署→应用需要经过的八大步骤、为什么只有少数公司和机构能够承担这样的训练成本之详细介绍
AGI:人工智能大模型领域实战篇—设计一个类似GPT-3.5/GPT-4的大模型从开发→部署→应用需要经过的八大步骤、为什么只有少数公司和机构能够承担这样的训练成本之详细介绍目录深思:为什么只有少数公司和机构能够承担这样的训练成本设计一个类似GPT-3.5/GPT-4的大模型从开发→部署→应用需要经过的八大步骤一、确定目标和开发计划二、数据部分:2~3个月三、算法部分:1~2个月四、架构部分五、硬件配置部分六、模型训练部分—大模型预训练:3~6个月原创 2023-04-15 09:42:43 · 3483 阅读 · 2 评论 -
ML:阿里云计算平台之搜索推荐演讲分享《多场景智能推荐助力业务增长》、《阿里云智能推荐应用实践:PAI-EasyRec Framework》、《新一代数仓架构漫谈》
可以将指定数据源中的数据,通过简单的配置,一次性的实时同步到Hologres中,支持整库内批量多表同步,同时也支持全增量一体化同步,先全量数据迁移,然后实时增量保持更新。定制算法策略的同时,无需关注上游的数据埋点、清洗逻辑、以及下游的在线链路拼接逻辑,仅需在控制台手动创建实验,即可对一组、多组配置进行修改,进行效果的追踪与实验的决策。通离线平台结合预采用的行业内算法模型,通过拖拽的简易方式,进行上下游数据连通,节点参数配置,串通一套完整的召回/排予侯全,并生成召回表/生排序模型。如何保证QPS和RT?原创 2023-03-08 23:46:29 · 1358 阅读 · 0 评论 -
AIGC之GPT-4:GPT-4的简介(核心原理/意义/亮点/技术点/缺点/使用建议)、使用方法、案例应用(计算能力/代码能力/看图能力等)之详细攻略
AIGC之GPT-4:GPT-4的简介(核心原理/意义/亮点/技术点/缺点/使用建议)、使用方法、案例应用(计算能力/代码能力/看图能力等)之详细攻略目录GPT-4的简介GPT-4的使用方法GPT-4的案例应用相关文章AIGC:ChatGPT(一个里程碑式的对话聊天机器人)的简介(意义/功能/核心技术等)、使用方法(七类任务)、案例应用(提问基础性/事实性/逻辑性/创造性/开放性的问题以及编程相关)之详细攻略https://y原创 2023-03-15 23:28:41 · 30668 阅读 · 3 评论 -
Paper:《GPT-4 Technical Report》的翻译与解读
Paper:《GPT-4 Technical Report》的翻译与解读目录Paper:《GPT-4 Technical Report》的翻译与解读Abstract摘要1、Introduction简介2、Scope and Limitations of this Technical Report本技术报告的范围和局限3、Predictable Scaling可预测的比例4、Capabilities能力5、Limitations局限性原创 2023-03-15 23:16:16 · 8017 阅读 · 0 评论 -
Py之openml:openml的简介、安装、使用方法之详细攻略
Py之openml:openml的简介、安装、使用方法之详细攻略目录openml的简介、安装、使用方法openml的安装openml的使用方法openml的简介、安装、使用方法 OpenML是一个全球性的机器学习实验室,机器学习研究应该易于访问和重用。OpenML是一个开放的平台,用于共享数据集、算法和实验——一起学习如何更好地学习。 OpenML 围绕开放接口构建,可用于自动共享(和导入)数据集、算法和直接来自我们已知和喜爱的工具的实验结果。通过原创 2021-03-20 00:25:32 · 16043 阅读 · 6 评论 -
NLP之Chatgpt:基于openai框架通过调用API接口实现Chatgpt的吊炸天功能的图文教程(基于python代码实现)、案例应用之详细攻略
NLP之Chatgpt:基于openai框架通过调用API接口实现Chatgpt的吊炸天功能的图文教程(基于python代码实现)、案例应用之详细攻略目录基于openai框架通过调用API接口实现Chatgpt功能的简介Chatgpt案例应用基于openai框架通过调用API接口实现Chatgpt功能的简介询问Chatgpt如何在python中使用Chatgpt功能1、第一步,申请OpenAI的API key2、第二步,安装 OpenAl库pip原创 2022-12-31 23:32:01 · 3850 阅读 · 0 评论 -
DL之Transformer:Transformer的简介(优缺点/架构详解,基于Transformer的系列架构对比分析)、使用方法(NLP领域/CV领域)、案例应用之详细攻略
DL之Transformer:Transformer的简介(优缺点/架构详解,基于Transformer的系列架构对比分析)、使用方法(NLP领域/CV领域)、案例应用之详细攻略目录相关文章Transformer的简介Transformer的使用方法Transformer的案例应用相关文章Paper:《The Illustrated Transformer》翻译与解读Paper:《The Illustrated Transformer》原创 2022-02-27 23:52:00 · 7779 阅读 · 1 评论 -
NLP:自然语言处理技术之NLP技术实践—自然语言/人类语言“计算机化”的简介、常用方法分类(基于规则/基于统计,离散式/分布式)之详细攻略
NLP:自然语言处理技术之NLP技术实践—自然语言/人类语言“计算机化”的简介、常用方法分类(基于规则/基于统计,离散式/分布式)之详细攻略目录自然语言/人类语言“计算机化”的简介—计算机如何表示自然语言自然语言/人类语言“计算机化”的常用方法推荐文章NLP:自然语言处理技术之NLP技术实践—自然语言/人类语言“计算机化”的简介、常用方法分类(基于规则/基于统计,离散式/分布式)之详细攻略NLP:自然语言处理领域常见的文本特征表示/文本特征抽取(本质都是“数字化”原创 2023-02-04 00:29:24 · 2042 阅读 · 1 评论 -
NLP之LSA/GloVe:LSA/GloVe的简介、使用方法、案例应用之详细攻略
NLP之LSA/GloVe:LSA/GloVe的简介、使用方法、案例应用之详细攻略目录LSA/GloVe的简介LSA/GloVe的案例应用LSA/GloVe的简介LSA/GloVe算法的概述LSA简介LSA全称Latent semantic analysis,隐含语义分析。它算是主体模型topic model的一种,对于LSA的直观认识就是文章里有词语,而词语是由不同的主题生成的。比如一篇文章包含词语:计算机,另一篇文章包含词语:电脑,在一般的向量空间来看,这两篇文章不相原创 2020-07-02 10:41:48 · 5357 阅读 · 1 评论 -
NLP之Word2Vec:Word2Vec算法的简介(CBOW和Skip-Gram及其对比)、安装、使用方法之详细攻略
NLP之Word2Vec:Word2Vec算法的简介(CBOW和Skip-Gram及其对比)、安装、使用方法之详细攻略目录Word2Vec算法的简介Word2Vec的网络主体简介—2种训练模式Word2Vec的安装Word2Vec的案例应用推荐文章Paper:《The Illustrated Word2vec》翻译与解读NLP:Word Embedding词嵌入/word2vec词向量思想方法(一种主流的分布式表示)的简介、使用方法、案例应用原创 2023-02-03 23:00:00 · 1280 阅读 · 0 评论 -
NLP之PTM:自然语言处理领域—预训练大模型时代各种吊炸天算法概述(NNLM→Word2Vec→ELMO→Attention→Transformer→GPT/BERT系列)、关系梳理、模型对比之详细
NLP之PTM:自然语言处理领域—预训练大模型时代各种吊炸天算法概述(NNLM→Word2Vec→ELMO→Attention→Transformer→GPT/BERT系列)、关系梳理、模型对比之详细攻略目录单个模型逐个概述多个大模型横向对比预训练模型研究发展图单个模型逐个概述NNLM模型的概述NLP之NNLM:NNLM神经语言模型算法(词向量法的始祖)的简介、网络结构、案例应用、代码实现之详细攻略https://yuny原创 2023-02-02 23:50:07 · 1412 阅读 · 0 评论