自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

极客BIM工作室

专注于BIM技术!

  • 博客(543)
  • 收藏
  • 关注

原创 OpenCasCad (OCCT):几何数据创建算法 Module ModelingAlgorithms

Module ModelingAlgorithms几何算法模块包含众多模块,目前最关心的是几何的创建。几何的创建算法。

2021-11-21 12:19:21 886 1

原创 Revit SDK 介绍:CompoundStructure 复合结构

前言本文介绍 Revit 复合结构,及 SDK 中的例子, CompoundStructure。内容概念说明复合结构墙、楼板、天花板和屋顶可以由平行的层构成。复合图元既可以由单一材质的连续图层构成(例如胶合板),也可以由多重图层组成(例如石膏板、龙骨、隔热层、气密层、砖和壁板)。 另外,构件内的每个层都有其特殊的用途。 例如,有些层用于结构支座,而另一些层则用于隔热。 Revit 会考虑每个图层的功能,并通过匹配功能优先顺序在相邻的复合结构中连接对应的图层。可以通过设置层的材质、厚度和功能来

2020-06-05 10:51:17 1458 2

原创 Dynamo For Revit 几何专题:概述

前言上周整理了一下 Revit API 的几何库接口,这里再整理一下 Dynamo For Revit 的几何库。和 Revit API 一样,Dynamo For Revit 提供了一套完整的几何库。既然是几何库,那就逃不过这些概念:点、线、面、体。那么,对于任意的几何库,实际上,你要关系的东西逃不过下面的表格,(点 / 线 / 面 / 体)与(点 / 线 / 面 / 体)之间的关系。比...

2020-03-29 10:32:30 2114

原创 Revit API 几何专题 1:几何类库概述 GeometryObject

几何类库Revit API 提供了一套完整的几何库。既然是几何库,那就逃不过这些概念:点、线、面、体。那么,对于任意的几何库,实际上,你要关系的东西逃不过下面的表格,(点 / 线 / 面 / 体)与(点 / 线 / 面 / 体)之间的关系。这些类的基类都是 GeometryObject。对应的点、线、面、体:点: Point线: Curve、 Edge、PolyLine、Profil...

2020-03-21 09:35:29 2834

原创 Dynamo For Revit: Category、Element、Element Type、Family、Family Symbol、Family Instance

前言通过使用 Dynamo For Revit 的节点,介绍一下 Revit 中 Category、Element、Element Type、Family、Family Symbol、Family Instance 这些概念的相关与差异。概念简介

2020-02-22 17:15:53 4230

原创 Revit的联动更新与参数化:核心原理与实现机制

数值型参数:用于限定图元的固定属性或尺寸关系,例如门与相邻隔墙的固定间距,修改隔墙位置时,门会自动保持该间距同步移动。关联型参数:用于建立不同图元的连接关系,例如楼板/屋顶的边缘与外墙绑定,移动外墙时,楼板和屋顶会自动保持连接;钢筋的等间距布置规则,修改图元长度后,钢筋的等距比例特性仍会维持。参数化建模通过定义图元的关联关系和属性规则,为联动更新提供了底层逻辑;联动更新依托参数化修改引擎,将参数规则转化为全项目的信息协同能力。

2026-01-20 00:00:00 1909

原创 AI导读AI论文:mHC: Manifold-Constrained Hyper-Connections

本文提出,旨在解决Hyper-Connections(HC)扩展残差流宽度时破坏恒等映射、导致训练不稳定与内存开销过大的问题。mHC通过流形约束恢复恒等映射属性,结合基础设施优化,在大规模LLM预训练中实现性能、稳定性与效率的平衡。

2026-01-06 00:00:00 779

原创 大模型训练不再“崩”!DeepSeek新技术mHC:稳提性能还省资源

你有没有想过,为什么大语言模型训练时总容易“掉链子”?比如训到一半损失突然飙升,或者GPU内存不够直接卡住?最近DeepSeek-AI团队提出的技术,刚好解决了这些头疼问题,今天就用3分钟带你看懂它的厉害之处。

2026-01-05 00:00:00 706

原创 Manus 技术壁垒深度拆解

Manus 的技术壁垒并非单一技术的突破,而是“架构设计、算法研发、工程打磨、数据沉淀、成本控制”五大维度的深度融合,形成了“经验库+工程沉淀+规模效应”的三重核心壁垒,具体可概括为:架构壁垒:“规划-执行-验证”多智能体协同架构+LLM 操作系统的创新设计,实现了从“指令解析”到“结果交付”的全链路闭环,这需要长期的架构迭代与场景验证,新玩家难以快速复制。

2026-01-01 00:00:00 1633

原创 AI导读AI论文: FinGPT: Open-Source Financial Large Language Models

本文提出FinGPT——一款由AI4Finance Foundation主导开发的开源金融大语言模型(FinLLMs),旨在解决金融领域高时间敏感性、高动态性、低信噪比(SNR)的核心挑战。与BloombergGPT等专有模型(训练成本约$300万)不同,FinGPT以数据中心approach为核心,构建包含数据来源层、数据工程层、LLMs层、任务层、应用层的端到端框架,通过轻量级微调(单次成本约$300,可训练参数仅8.3M)、及优化模型性能,在金融情感分析任务中以82.1%的准确率。

2026-01-01 00:00:00 2097

原创 AI导读AI论文: NeurCADRecon: Neural Representation for Reconstructing CAD Surfaces by Enforcin

针对低质量无向点云直接重建CAD模型的挑战,研究者提出自监督神经网络NeurCADRecon,其核心思想是利用CAD模型表面“分段光滑且近似可展(高斯曲率接近0)”的先验,通过在神经符号距离函数(SDF)优化中加入高斯曲率约束项(最小化绝对高斯曲率)确保可展性,同时引入双谷曲线(double-trough curve)容忍尖端点的非零高斯曲率(约π/2),并设计动态采样策略应对点云稀疏或缺失问题;实验在ABC、Fusion Gallery、DeepCAD、CAPRI-Net四个公开数据集。

2025-12-24 00:00:00 906

原创 复现开源项目(SpatialLM),你必须跨越的“理论到落地”鸿沟

看完这些难度,很多人可能会问:普通人真的能复现开源项目吗?答案是:看目标。如果只是“个人爱好”,不追求效果达标,只是想通过复现熟悉技术流程、积累经验,那么完全可行。比如下载SpatialLM的开源代码,跟着文档一步步配置环境、跑通简单demo,这个过程能快速提升对3D视觉、多模态融合的理解,是很好的学习方式。但如果想“精准复现”,达到专业团队的效果,甚至以此作为职业发展的跳板,成为专业技术人员,那就需要做好“吃苦”的准备。

2025-12-21 00:00:00 666

原创 SpatialLM:群核科技开源的 3D 空间理解多模态大语言模型

SpatialLM 以“低成本视频输入+高精度空间理解+开源赋能”为核心亮点,是连接现实空间与数字世界的关键技术桥梁。其轻量架构与多场景适配能力,使其成为空间智能领域的重要基础设施,推动具身智能、建筑数字化、AR/VR 等领域的技术落地与创新应用。

2025-12-20 00:00:00 1452

原创 让AI自动“造房间”:SpatialGen是什么?

SpatialGen的核心突破,是把“文本/图像风格”和“3D空间规则”结合,用“扩散模型+注意力机制”解决了“多视角空间一致性”的行业痛点——既保证生成内容的视觉真实感,又符合物理空间的逻辑约束。它的开源降低了3D场景生成的门槛:设计师不用手动建模,只需输入布局和参考图就能出3D方案;开发者可以基于其代码拓展到游戏、AR/VR等场景。本质上,SpatialGen是“空间理解”与“内容生成”的结合体,让AI从“画平面”升级为“造立体空间”,是室内数字化、元宇宙场景搭建的实用工具。

2025-12-20 00:00:00 578

原创 AI导读AI论文: Towards a Unified View of Parameter-Efficient Transfer Learning

该论文发表于ICLR 2022,针对传统全参数微调在大规模预训练语言模型(PLMs)中存在的参数冗余、部署成本高等问题,提出了参数高效迁移学习的统一框架,将Adapter、Prefix Tuning、LoRA等主流方法重构为对PLMs隐藏状态的修改,并定义了功能形式、插入形式等核心设计维度;通过跨方法迁移设计元素,提出了MAM Adapter等新变体,在文本摘要(XSum)、机器翻译(WMT2016 en-ro)、自然语言推理(MNLI)和情感分类(SST2)四大任务中,仅微调。

2025-12-18 00:00:00 1083

原创 AI导读AI论文: Kronos: A Foundation Model for the Language of Financial Markets

Kronos是一款专为金融K线数据设计的时间序列基础模型,通过BSQ离散化tokenizer将连续的OHLCVA数据转化为粗细双分量token,基于超120亿条全球45个交易所的K线记录进行自回归预训练,在价格序列预测(RankIC提升93%)、波动率预测(MAE降低9%)、合成K线生成(生成保真度提升22%)等核心金融任务中表现优异,同时在投资模拟中实现更高年化超额收益,成为量化金融领域高效且通用的端到端分析工具。

2025-12-17 00:00:00 1069

原创 大模型参数高效微调:5种主流方法的技术解析

参数高效微调技术的核心价值,是让大模型从“实验室的高成本模型”变为“可落地的实用工具”——5种方法各有侧重:LoRA因“低参数、低延迟、高效果”成为多数场景的首选;Adapter适合资源极度受限的轻量部署;Prefix Tuning是文本生成任务的专用方案;Parallel Adapter与Scaled PA则是“低延迟+强适配”场景的优化方向。这些方法的局限也很明确:相比全量微调,它们的表达能力仍有差距,复杂任务需结合多方法(如“LoRA+Adapter”)提升效果。

2025-12-17 00:00:00 1008

原创 Kronos-Tokenizer-base:让大模型“读懂”金融K线的专属“翻译官”

Kronos-Tokenizer-base的本质,是用“金融场景定制化”替代“通用工具复用”——它证明:要让大模型在金融领域发挥价值,从数据编码的第一步就要贴合场景特性。如果你正在做金融时序AI项目,这个专属K线Tokenizer或许能帮你解决“数据喂不进模型、信号抓不住”的痛点。

2025-12-16 00:00:00 1348

原创 大模型的发展历程: 从文本到音视频生成的技术演进

总结来看,当前主流的文本生成、图像生成、视频生成大模型,其核心技术底座是Transformer与潜在扩散模型。两者并非孤立存在,而是在多模态场景中深度融合:文生图依赖Transformer文本编码器+扩散模型图像生成器;文生视频则采用Transformer时空建模模块+视频扩散模型生成器。需要说明的是,本文的梳理为了便于理解进行了简化,实际的技术体系更为复杂。Transformer和潜在扩散模型都衍生出了大量变种,在不同场景下也存在相应的技术替代品。

2025-12-16 00:00:00 606

原创 从技术架构角度看WAN:拆解通义万相的视频生成“引擎”

WAN的架构没有走“堆参数”的路线,而是用“Wan-VAE压缩+DiT扩散”的组合,在“效率、多任务、可控性”之间找到了平衡——这也是它能成为开源视频生成工具里“落地友好型选手”的关键。

2025-12-15 00:00:00 486

原创 AI导读AI论文: WAN: OPEN AND ADVANCED LARGE-SCALE VIDEO GENERATIVE MODELS

Wan是阿里巴巴推出的开源大规模视频生成基础模型套件,基于扩散Transformer范式,通过创新的时空变分自动编码器(Wan-VAE)、规模化预训练策略等核心技术,具备领先性能、全面性、消费级效率、开源性。

2025-12-14 00:00:00 1195

原创 阿里WAN大模型:通义万相视频生成系统

官方网址WAN(通义万相)是阿里巴巴开发的开源视频生成大模型系列,由通义实验室研发,旨在推动AI视频生成技术的边界,支持从文本或图像生成高质量视频。核心版本演进Wan2.1:2025年2-3月开源,包含14B和1.3B参数规模模型,支持文生视频(T2V)和图生视频(I2V)Wan2.2:2025年7月28日发布,首次将MoE(混合专家)架构引入视频生成,支持消费级显卡运行Wan2.5:2025年9月24日发布,实现原生音画同步,支持文本/图像直接生成带同步音频的视频阿里WAN大模型(通义万相)是。

2025-12-13 00:00:00 2522 1

原创 CAD-Assistant 闭环逻辑详解:无训练也能精准建模的核心密码

CAD-Assistant 的闭环逻辑,本质是用 “大模型的推理能力 + 工具的精确性 + 环境的反馈机制”,重构了 CAD 设计的自动化流程。其核心价值在于:零训练成本:无需标注 CAD 数据集,仅通过工具调用和反馈就能适配多样场景;高精度落地:闭环迭代确保结果与需求一致,解决了 VLLM “光说不练” 的痛点;低使用门槛:设计师无需编写代码,仅通过草图、文本就能生成专业 CAD 模型。

2025-12-12 00:00:00 1740

原创 AI导读AI论文: DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD是首个针对计算机辅助设计(CAD)模型的深度生成网络,通过类比CAD命令序列与自然语言,基于构建自编码器,核心创新在于将CAD模型表示为可被神经网络处理的命令序列(含草图、 extrusion 等操作及参数),并构建了含178,238个CAD模型的大规模数据集(公开可用);

2025-12-11 00:00:00 797

原创 聊透CAD Coder:SFT和GRPO怎么让AI写对CAD代码?

对!参数完全不变,靠大模型的 “概率采样”,从同一个输出分布里抽不同写法 —— 就像同一个学生做同一道题,试不同解法。CAD Coder 的逻辑其实很简单:SFT 教 AI “会写 CAD 代码”,GRPO 教 AI “写好 CAD 代码”。整个框架最妙的就是 GRPO 的 “多组对比 + 领域奖励”—— 不搞虚的,只盯着 “能运行、形状准” 这两个核心需求优化。

2025-12-11 00:00:00 1021

原创 AI导读AI论文: FLEXCAD: UNIFIED AND VERSATILE CONTROL- LABLE CAD GENERATION WITH FINE-TUNED LARGE LANGUAG

为解决现有可控CAD生成方法可控性有限(仅覆盖部分构建层级)且需多模型支持不同控制类型(效率低)的问题,研究者提出FlexCAD——一种通过微调大语言模型(LLMs)实现的统一、通用可控CAD生成模型,发表于ICLR 2025。该模型核心在于:将CAD模型(基于sketch-and-extrude建模范式)转化为结构化文本(用文本token表示曲线类型、几何数据及层级结束标志),并通过层级感知掩码策略。

2025-12-10 00:00:00 1136

原创 CAD-GPT:从图像到几何图形,多模态大模型如何重构CAD建模流程?

CAD-GPT的核心逻辑,是用多模态大模型打通“图像/文本→CAD”的链路——它没发明新模块,而是把成熟的视觉-语言模型,高效适配到了工业设计场景。后续如果用上更大的模型、更多的行业数据,说不定能实现更复杂的装配体、参数化建模。

2025-12-10 00:00:00 781

原创 AI导读AI论文: CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images

论文提出CADCrafter,一种基于 latent diffusion 的框架,可从无约束图像(单视图/多视图)直接生成参数化CAD命令序列;该框架仅在合成无纹理CAD数据上训练,通过几何编码器(提取深度和法向图特征,缓解合成与真实数据的领域差距)、多视图到单视图知识蒸馏(提升单视图输入鲁棒性)及基于直接偏好优化(DPO)的自动代码检查器(降低无效CAD序列率)解决关键挑战;同时构建RealCAD真实世界数据集(3D打印CAD模型的多视图图像与CAD命令对)用于验证;

2025-12-09 00:00:00 1919

原创 ControlNet里的“隐形连接器”:零卷积(Zero Convolution)的工作流程

如果用普通1×1卷积(随机初始化参数)代替零卷积,会发生什么?训练初期,普通卷积的随机输出会“污染”SD主分支的特征,导致SD直接生成乱码;必须重新微调SD主分支才能恢复质量,这会大幅增加训练成本,也失去了ControlNet“冻结SD权重”的优势。零卷积的“全零初始化”,本质是用最简单的方式实现了“预训练模型+新分支”的无痛融合。它解决了“新控制分支如何兼容预训练扩散模型”的核心问题;用“全零初始化+渐进式学习”,平衡了“控制精度”和“生成质量”。

2025-12-09 00:00:00 1263

原创 AI导读AI论文: CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced

为解决现有CAD模型生成方法(如依赖 latent vectors、点云,数据获取难、存储成本高)及传统多模态大语言模型(MLLMs,如GPT-4)3D空间推理能力弱的问题,研究团队提出CAD-GPT——一种基于的空间推理增强型多模态LLM,可通过单张图像或文本描述生成CAD建模序列;其核心是3D建模空间定位机制,将3D空间位置、3D草图平面旋转角映射到1D语言特征空间,并离散2D草图坐标,同时引入三类定制token(3D朝向、3D坐标、2D草图)及可学习位置嵌入;数据集基于DeepCAD构建,包含。

2025-12-08 00:00:00 944 1

原创 AI导读AI论文: CAD-Coder: Text-to-CAD Generation with Chain-of-Thought and Geometric Reward

现有方法多基于预定义命令序列(如DeepCAD、Text2CAD),存在三大问题:CAD-Coder将文本到CAD任务重构为生成Python基於参数化CAD语言CadQuery的脚本,选择CadQuery的核心优势如下:​t=1∑∣Cgt​∣​logπθ​(ct​∣c<t​,L)​局限:仅SFT无法保证几何准确性,对需多步空间推理的复杂模型表现不足。阶段2:强化学习(RL)—— 提升几何保真与推理采用Group Reward Policy Optimization(GRPO) 算法(无需 Cri

2025-12-07 00:00:00 914

原创 AI导读AI论文: CAD-Assistant: Tool-Augmented VLLMs as Generic CAD Task Solvers

本文提出,这是一个基于工具增强VLLM的通用CAD任务求解框架,核心由VLLM规划器(如GPT-4o)、集成的执行环境,以及包含手绘草图参数化器、约束检查器等在内的CAD专用工具集构成;它能处理文本、手绘草图、3D扫描等多模态输入,通过迭代生成Python代码并在FreeCAD中执行,动态适配CAD设计状态,有效弥补VLLM在几何推理和CAD命令影响预测上的局限;在CAD问答(CQA)、自动约束、手绘草图参数化。

2025-12-06 00:00:00 851

原创 详解 KL 散度的反向传播计算:以三分类神经网络为例

为了清晰展示,我们简化神经网络结构(实际模型可能有多个隐藏层,但核心逻辑一致):由于我们的目标是对齐 PPP 和 QQQ,整体损失函数 L\mathcal{L}L 直接等于KL散度(实际中可能会叠加其他损失项,但此处聚焦KL散度的反向传播):L=DKL(P∥Q)=∑c=02Pc⋅ln⁡(PcQc)\mathcal{L} = D_{KL}(P \parallel Q) = \sum_{c=0}^2 P_c \cdot \ln\left( \frac{P_c}{Q_c} \right)L=DKL​(P∥Q)=

2025-12-06 00:00:00 1351

原创 AI导读AI论文: DeepSeek-V3.2: Pushing the Frontier of Open Large Language Models

DeepSeek-V3.2是DeepSeek-AI推出的开源大语言模型,通过三大技术创新显著提升性能: DSA稀疏注意力将长文本计算复杂度从O(L²)降至O(Lk),保留128K上下文能力; 可扩展RL框架投入超预训练10%的计算量,使基础版推理性能比肩GPT-5,高计算变体DeepSeek-V3.2-Speciale在IMO/IOI等竞赛斩获金牌; 智能体任务合成生成1800+环境与8.5万+提示,工具使用场景性能提升35%。模型在H800 GPU上实现更低推理成本,但存在世界知识广度不足等局限,未来将扩

2025-12-05 00:00:00 1157

原创 DeepSeek Sparse Attention架构解析:让长上下文大模型推理又快又准

DSA的本质,是用“轻量索引筛选+高效注意力计算”的组合,解决了长上下文大模型的“性能-效率”矛盾。这张架构图里的每个模块,都在围绕“少算但算对”这个目标设计——而这,正是开源大模型能追上闭源前沿的关键技术之一。

2025-12-05 00:00:00 1024

原创 AI论文整理:LATENT CONSISTENCY MODELS:SYNTHESIZING HIGH-RESOLUTION IMAGES WITH FEW-STEP INFERENCE

为解决(如Stable Diffusion)生成高分辨率图像时迭代采样计算密集、速度慢的问题,研究人员借鉴提出;LCMs在图像潜在空间直接预测增强概率流ODE(PF-ODE)的解,通过一步引导蒸馏方法(融合Classifier-Free Guidance, CFG)和SKIPPING-STEP技术(k=20,将时间步从千级缩短至几十级)加速收敛,仅需32 A100 GPU小时即可训练出支持2∼4步生成768×768高分辨率图像的模型;同时提出适配定制数据集,在LAION-5B-Aesthetics数据集。

2025-12-04 00:00:00 653

原创 AI论文整理:Linguistic Binding in Diffusion Models

论文针对文本条件扩散模型中实体与视觉属性绑定错误(如“粉色向日葵和黄色火烈鸟”误生成黄色向日葵与粉色火烈鸟)的核心问题,提出SynGen方法:首先通过spaCy句法解析器提取 prompt 中的实体名词及其修饰词(如颜色、材质),再设计正负结合的注意力损失函数(正损失最大化实体-修饰词注意力图重叠,负损失最小化其与无关词的重叠),在推理阶段前25个去噪步骤(共50步)中优化 latent 变量(无需模型重训练或微调)。该方法在ABC-6K、A&E数据集及新构建的DVMP挑战集。

2025-12-04 00:00:00 629

原创 OCCT 8.0:2026年初将会有很大变化,值得关注

作为持续关注OCCT发展的开发人员,一直觉得OCCT有点老态,不过8.0可能有很大的变化,要关注一下。信息来源:https://github.com/Open-Cascade-SAS/OCCT/discussions/846。

2025-12-04 00:00:00 784

原创 序列建模:RNN、LSTM 与 Transformer 的技术异同深度解析

序列建模是自然语言处理(NLP)、语音识别、时序预测等领域的核心任务,其核心目标是捕捉数据中的 “时序依赖” 与 “全局关联”。循环神经网络(RNN)作为早期主流架构,奠定了序列建模的基础,但受限于梯度消失 / 爆炸问题;长短期记忆网络(LSTM)通过门控机制突破了这一局限,成为中长期序列建模的标杆;而 Transformer 凭借自注意力机制颠覆了传统时序依赖的建模方式,以并行计算能力和全局关联捕捉能力成为当前主流架构。

2025-12-04 00:00:00 1607

原创 抢先了解 DeepSeek V3.2:DSA 稀疏注意力突破,推理比肩 GPT-5

普惠AI:通过技术创新大幅降低成本,让AI从"奢侈品"变为基础设施,赋能千行百业开源引领:以"开源-反馈-迭代"的创新模式,构建拥有20万+开发者的全球社区,形成良性技术闭环国产崛起:与国产芯片、算力平台深度融合,为中国AI产业自主可控贡献核心力量DeepSeek V3.2的发布不仅是一个技术里程碑,更是AI民主化的宣言。它证明了开源模型完全可以与闭源巨头比肩,甚至在某些领域实现超越。

2025-12-04 00:00:00 1758

【计算机视觉】基于ControlNet的扩散模型条件控制架构:实现文本到图像生成的空间精准调控

内容概要:本文提出ControlNet,一种用于增强大型预训练文本到图像扩散模型(如Stable Diffusion)的神经网络架构,能够通过输入边缘、姿态、深度、分割图等空间条件精确控制图像生成过程。ControlNet通过复制并锁定原始模型的编码层作为强大骨干,同时引入可训练副本与“零卷积”连接,确保训练初期不引入有害噪声,防止灾难性遗忘,支持小数据集下的高效微调。该方法可在单张GPU上快速训练,并兼容多种条件输入,包括单一或组合条件,且无需修改原始模型结构即可迁移到社区模型中。实验表明ControlNet在不同数据规模下均表现鲁棒,在图像质量与条件保真度方面优于现有方法。; 适合人群:计算机视觉与深度学习领域的研究人员、AI图像生成技术开发者及对扩散模型控制机制感兴趣的技术人员。; 使用场景及目标:①实现对文本到图像生成的空间精细控制,如基于草图、人体姿态或深度图生成对应图像;②在有限数据条件下安全微调大模型,避免过拟合与知识遗忘;③支持多条件联合控制与跨模型迁移,提升实际应用灵活性。; 阅读建议:建议结合代码实现深入理解“零卷积”机制与ControlNet结构设计,重点关注消融实验与用户研究部分以评估其有效性,并尝试在不同条件输入和下游任务中复现与扩展该方法。

2025-11-04

使用OpenGL + QT 实现管线求交地操作

这份代码实现了一个基于 OpenGL 和 Qt 的三维可视化程序,用于渲染一个彩色的立方体,并支持用户通过鼠标操作来发射射线以及旋转视角。用户可以通过鼠标左键点击窗口发射射线,射线会从相机位置出发,指向点击位置在三维空间中的对应点;同时,用户按住鼠标右键拖动可以旋转视角,从而改变观察立方体的角度。

2025-03-21

Open CASCADE Technology 7.6.0用于3D建模瓶子实例教程

内容概要:本文详细介绍了利用 Open CASCADE Technology(OCCT)7.6.0 开发环境进行三维几何建模的应用实践。具体而言,通过构建瓶身模型为实例讲解如何使用 OCCT 中的基本组件完成从简单图形到复杂组合实体的各项步骤。首先定义几何形状与参数,随后创建截面并沿轴线拉伸生成实体,在此基础上进一步修饰边角添加瓶颈、螺纹特征以及内部掏空处理等一系列工艺流程都被逐步剖析。 适用人群:有经验的C++程序员或工程师,对几何建模有兴趣的技术人员。 使用场景及目标:①了解OCCT基本类及其用法;②熟悉运用C++接口操作点线面;③掌握实体变换及布尔运算;④提升解决实际工程项目问题的能力。 其他说明:提供了一种系统性的学习方法论来帮助初学者上手OCCT平台上的产品开发流程,并指出了更多深入探索的方向如咨询和支持服务网站链接。

2025-03-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除