自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

极客BIM工作室

专注于BIM技术!

  • 博客(454)
  • 收藏
  • 关注

原创 OpenCasCad (OCCT):几何数据创建算法 Module ModelingAlgorithms

Module ModelingAlgorithms几何算法模块包含众多模块,目前最关心的是几何的创建。几何的创建算法。

2021-11-21 12:19:21 819

原创 Revit SDK 介绍:CompoundStructure 复合结构

前言本文介绍 Revit 复合结构,及 SDK 中的例子, CompoundStructure。内容概念说明复合结构墙、楼板、天花板和屋顶可以由平行的层构成。复合图元既可以由单一材质的连续图层构成(例如胶合板),也可以由多重图层组成(例如石膏板、龙骨、隔热层、气密层、砖和壁板)。 另外,构件内的每个层都有其特殊的用途。 例如,有些层用于结构支座,而另一些层则用于隔热。 Revit 会考虑每个图层的功能,并通过匹配功能优先顺序在相邻的复合结构中连接对应的图层。可以通过设置层的材质、厚度和功能来

2020-06-05 10:51:17 1401 2

原创 Dynamo For Revit 几何专题:概述

前言上周整理了一下 Revit API 的几何库接口,这里再整理一下 Dynamo For Revit 的几何库。和 Revit API 一样,Dynamo For Revit 提供了一套完整的几何库。既然是几何库,那就逃不过这些概念:点、线、面、体。那么,对于任意的几何库,实际上,你要关系的东西逃不过下面的表格,(点 / 线 / 面 / 体)与(点 / 线 / 面 / 体)之间的关系。比...

2020-03-29 10:32:30 2033

原创 Revit API 几何专题 1:几何类库概述 GeometryObject

几何类库Revit API 提供了一套完整的几何库。既然是几何库,那就逃不过这些概念:点、线、面、体。那么,对于任意的几何库,实际上,你要关系的东西逃不过下面的表格,(点 / 线 / 面 / 体)与(点 / 线 / 面 / 体)之间的关系。这些类的基类都是 GeometryObject。对应的点、线、面、体:点: Point线: Curve、 Edge、PolyLine、Profil...

2020-03-21 09:35:29 2770

原创 Dynamo For Revit: Category、Element、Element Type、Family、Family Symbol、Family Instance

前言通过使用 Dynamo For Revit 的节点,介绍一下 Revit 中 Category、Element、Element Type、Family、Family Symbol、Family Instance 这些概念的相关与差异。概念简介

2020-02-22 17:15:53 4123

原创 从单模型到多域自由转换:StarGAN的公式与多域图像生成魔法

从公式到落地,StarGAN用“单生成器+域标签控制”的设计,打破了多域转换的模型复杂度瓶颈。其核心是通过对抗损失保证真实感、域分类损失保证目标域准确性、循环一致性损失保证转换合理性——这三个损失的协同作用,让“一个模型搞定所有域转换”从想法变成了现实。如今,StarGAN的思路已延伸出StarGAN v2(支持更高质量的多域转换)等改进模型,持续推动多域生成技术的发展。下次当你看到AI轻松实现图像的“千变万化”时,不妨想想背后这组公式支撑的“单模型多域控制”逻辑——简洁,却充满力量。

2025-11-07 00:00:00 765

原创 从“会烧开水”到“知其所以然”:扩散模型文生图的理论基石

扩散模型能“文生图”,绝非“只知烧开水”的经验主义,而是**“概率理论(分布演化+变分推断)+ 神经网络表达能力(万能近似定理)+ 工程设计(U-Net+注意力)”**的完美统一。它就像“烧开水”的现代解释:我们不仅知道“加热能让水沸腾”(实验结果),更理解“水的沸点是分子动能的临界状态”(理论本质)。扩散模型的每一次图像生成,都是这套理论的生动实践——从噪声到图像的分布逆转,从文本到视觉的语义对齐,从数学推导到神经网络的工程落地,缺一不可。

2025-11-07 00:00:00 833

原创 从公式到跨域魔法:揭秘CycleGAN的无配对图像转换黑科技

在计算机视觉领域,“图像到图像转换”是个充满想象力的方向——把马变成斑马、把冬季雪景变成夏日盛景、把素描变成写实画……但现实中,无配对数据 的场景比比皆是(我们很难找到“马-斑马”“冬季-夏季”的一一配对样本)。CycleGAN正是为解决这一难题而生,其核心逻辑都藏在以下三个公式中:这是生成器 GGG 和判别器 DYD_YDY​ 之间的对抗博弈损失,用于保证“生成的目标域图像足够真实”。角色定义:公式细节:LGAN(G,DY,X,Y)=Ey∼pdata(y)[log⁡DY(y)]+Ex∼pdata(x)[

2025-11-06 00:00:00 806

原创 ControlNet:Adding Conditional Control to Text-to-Image Diffusion Models

ControlNet 通过“冻结原模型+学习控制信号”的轻量设计,为扩散模型赋予了精确的可控性,既保留了大模型的生成质量,又降低了定制化控制的门槛。它的出现不仅推动了 AIGC 从“随机生成”走向“精准创作”,也为普通用户提供了用“视觉语言”与 AI 协作的能力,成为连接创意与实现的重要桥梁。

2025-11-06 00:00:00 901

原创 反向传播在GAN训练中的作用

在GAN的训练过程中,。无论是判别器(D)还是生成器(G),本质上都是神经网络,而神经网络的参数优化离不开反向传播来计算梯度。

2025-11-05 00:00:00 475

原创 VAE可以被用到扩散模型中,用于编码和解码。但是GAN网络不行?

VAE是“为潜在空间而生”的模型:通过显式的概率约束和编码器-解码器闭环,构建了连续、结构化、可解释的潜在空间,这与扩散模型“在潜在空间中逐步转换分布”的核心需求完美匹配。而GAN是“为生成逼真样本而生”的模型:其设计不关注潜在空间的结构,也缺乏可靠的编码-解码闭环,因此无法满足扩散模型对潜在空间的基本要求。

2025-11-05 00:00:00 1027

原创 U-Net 的输入与输出:通用场景与扩散模型场景解析

通用 U-Net 是 “单输入 - 单输出” 的像素级预测网络,输入为图像,输出为分割图;扩散模型 U-Net 是 “多输入 - 单输出” 的噪声预测网络,输入需融合 “带噪数据、时间步、条件信息”,输出为与带噪数据同尺寸的噪声图;两者的核心差异源于任务目标:分割是 “归类像素”,而扩散模型是 “预测噪声”—— 这也解释了为何扩散模型要对 U-Net 做 “时间步嵌入、条件融合” 的定制化改造。

2025-11-04 00:00:00 1460

原创 从公式看对抗逻辑:揭秘生成对抗网络(GAN)的训练博弈之路

从公式到训练过程,GAN的核心魅力在于**“对抗式共同进化”**——判别器在“打假”中更敏锐,生成器在“造假”中更逼真。正是这种博弈,让GAN能生成以假乱真的内容,在艺术创作、数据增强等领域大放异彩。下次再看到AI生成的惊艳作品时,不妨想想背后这对“猫鼠搭档”在公式min⁡Gmax⁡DVDGEx∼pdataxlog⁡DxEz∼pzzlog⁡1−DGzGmin​Dmax​VDGEx∼pdata​x​log。

2025-11-04 00:00:00 1092

原创 扩散模型去噪:U-Net 复用机制与条件信息的使用原则

在扩散模型的反向去噪过程中(从xT​到x0′​),虽然需要迭代数十至数千步,但,且。

2025-11-03 00:00:00 1220

原创 扩散模型入门:原理、训练与生成全解析

环节核心操作条件信息作用正向扩散真实数据→纯噪声(固定加噪)无作用反向扩散(训练)带噪数据→预测噪声(U-Net 学习)约束噪声预测,建立条件关联生成阶段纯噪声→真实数据(迭代去噪)引导生成方向,实现可控生成。

2025-11-02 00:00:00 978

原创 变分自编码器(VAE):用概率解锁生成式AI的“基因密码”

VAE的核心价值,在于它把“生成式AI”从“黑箱式创造”推向了“可解释的概率化创造”。它证明了:通过对“潜在空间概率分布”的建模,AI不仅能“复刻”数据,更能“理解”数据的分布规律,进而创造出无限可能的新内容。从VAE出发,后续的生成模型(如VQ-VAE、扩散模型)也都在“概率建模”的思路上不断进化。可以说,VAE是打开“生成式AI概率之门”的一把关键钥匙。

2025-11-01 00:00:00 691

原创 AI 图像生成技术发展时间脉络:从 GAN 到多模态大模型的知名模型概略解析

引入“样式混合”“截断技巧”,实现对生成图像特征(发型、肤色等)的精细控制,生成的人脸图像高度逼真,为后续StyleGAN系列奠定基础。Google多模态大模型,支持文本、图像、视频联合处理,可根据长文本、视频片段生成逻辑连贯的图像/视频内容,向动态内容生成延伸。OpenAI推出的早期文本-图像生成模型,可根据趣味文本描述(如“牛油果穿西装办公”)生成对应图像,开启多模态图像生成新方向。百度推出的中文原生文本-图像生成模型,支持中文提示词(如“水墨江南水乡”),在中文语境的创意生成、商业设计中优势明显。

2025-10-31 00:00:00 999

原创 生成式设计案例:MG AEC利用Autodesk AEC Collection推进可持续建筑设计

主体定位:MG AEC是D3 Technologies的子公司,作为连接设计与制造的咨询公司,核心职能是评估并优化工作流,为设计与施工团队提供技术支持,帮助终端用户实现目标。核心项目:通过名为SolVista的概念验证(PoC)案例,证明高性能可持续建筑设计可(且需,应对气候危机)成为主流,案例对象为美国科罗拉多州丹佛中央商务区以西的多层建筑。核心工具依赖:全程依托,该工具集是实现数据驱动设计、提升可持续性的关键支撑。

2025-10-19 00:00:00 955

原创 从“生物进化”到算法优化:遗传算法的5个核心阶段

如果你听说过“生成式设计”“智能优化”,大概率绕不开一个关键技术——。它的灵感源自达尔文的自然选择学说,把“种群进化”的逻辑搬进计算机,用“优胜劣汰”的规则找到复杂问题的最优解。小到产品结构轻量化,大到建筑日照优化,都能看到它的身影。而一个典型的遗传算法,就像一场“人工进化”实验,核心通过5个阶段循环推进,最终让“优质基因”(最优解)脱颖而出。今天我们就用最通俗的语言,拆解这5个关键阶段。

2025-10-18 00:00:00 644

原创 思想实验:如何使用MeshGPT?

MeshGPT的输入是“ + 类别标签token + [可选提示token]”的离散序列 ,核心是通过类别标签控制生成目标,通过提示序列引导结构。从测试数据提取的三角面片需先转换为量化token才能作为输入,加噪声也需在token层面操作。按这个逻辑构造输入,就能稳定生成指定类别的3D网格。

2025-10-17 00:00:00 1831

原创 三维设计可视化编程工具:Dynamo(Autodesk)VS Grasshopper(Rhino)

Dynamo与Grasshopper的本质差异源于其技术基因:Dynamo是“BIM优先”的工具,通过参数化提升建筑流程效率;Grasshopper是“设计优先”的平台,以算法驱动形态创新。两者并非替代关系,而是互补工具——在建筑项目中,Dynamo负责标准化构件的批量生成与数据管理,Grasshopper处理异形结构与性能优化;在工业设计中,Grasshopper主导曲面建模,Dynamo辅助生产线布局。随着RhinoInside技术的普及,两者的协同应用将成为复杂项目的主流工作流。

2025-10-17 00:00:00 1494

原创 MeshGPT:三角形网格生成的Decoder-Only Transformer范式解析

方法论创新:提出“几何词汇表+自回归Transformer”的端到端框架,打破传统3D生成的后处理依赖;技术突破:通过图卷积编码与顶点级量化,解决网格生成的拓扑连贯性与序列长度问题;应用价值:生成的紧凑、高保真网格可直接用于游戏、影视等工业场景,推动3D资产自动化生成的落地。从机器学习研究视角看,MeshGPT的成功验证了“NLP范式向结构化3D表示迁移”的可行性,为跨模态结构化生成(如3D、视频、图形)提供了重要参考。

2025-10-16 00:00:00 793

原创 Building-GAN模型结构详解

程序图(Program Graph),是建筑师画的“功能关系图”——节点:代表建筑里的“功能房间”(比如电梯、走廊、办公室、卫生间,共6种类型),每个节点还带信息(比如“这个电梯在3楼”)。边:代表“房间之间要连通”(比如电梯节点和走廊节点之间有边,意思是“电梯要和走廊开门连通”)。GNN(图神经网络):专门处理“图结构数据”的模型(比如社交网络、知识图谱,或者这里的程序图)。因为程序图不是图片(不能用CNN)、不是文字序列(不能用RNN),只有GNN能“看懂”节点之间的连接关系。

2025-10-15 00:00:00 1180

原创 GNN是和RNN一样的吗?多次循环,但是更新的是同一批参数?

GNN(图神经网络)和RNN(循环神经网络),虽然两者都存在“参数共享”的核心设计,但“循环”的本质、目的和数据场景完全不同,不能简单等同。

2025-10-14 00:00:00 614

原创 生成对抗网络(GAN)及其变种:CycleGAN和StarGAN

本文主要介绍了生成对抗网络(GAN)的基本概念、结构和原理,同时详细阐述了其两个重要变种CycleGAN和StarGAN的特点、结构及应用场景。通过对这三种网络的介绍,帮助读者更好地理解生成对抗网络及其在图像生成和转换领域的发展与应用。

2025-10-13 00:00:00 1837 1

原创 计算学习理论:周志华《机器学习》中的理论基石

定义 12.1(PAC 辨识):若存在学习算法,对于任意设定的误差阈值(介于 0 和 1 之间)和置信度阈值(介于 0 和 1 之间),当训练样本量足够大时,算法输出的假设能满足:泛化误差不超过误差阈值的概率,不低于(1 减去置信度阈值)。则称该算法能 PAC 辨识概念类。→ 核心:算法能以高置信度输出 “近似正确” 的假设。定义 12.2(PAC 可学习)

2025-10-12 00:00:00 1411

原创 演化搜索与群集智能:五种经典算法探秘

在人工智能与计算机科学领域,为高效解决复杂优化、搜索等问题,演化搜索和群集智能算法应运而生。它们从生物进化、群体协作等现象汲取灵感,为诸多难题提供创新且有效的解决方案。下面介绍遗传算法、蚁群算法、鸟群算法、粒子群算法以及模拟退火算法这五种具有代表性的算法。

2025-10-12 00:00:00 762

原创 半监督学习:机器学习中的“半指导”学习范式

监督学习:训练数据全为 “标注样本”(如 1000 张标注了 “猫 / 狗” 的图片),模型直接学习 “输入→标注结果” 的映射关系,优点是精度高,缺点是标注成本极高(需人工逐一标注)。无监督学习:训练数据全为 “未标注样本”(如 1000 张无任何标签的图片),模型仅从数据本身的分布特征(如颜色、形状)中挖掘规律(如聚类成 “毛茸茸类”“有羽毛类”),优点是无需标注,缺点是无法直接完成分类、回归等 “预测任务”。半监督学习。

2025-10-11 00:00:00 517

原创 机器学习之规则学习(Rule Learning)

规则学习是机器学习中 “可解释性优先” 的重要分支,其核心是从数据中挖掘结构化的 If-Then 规则,平衡 “预测精度” 与 “逻辑透明”。尽管在处理复杂非线性数据时,规则学习的表达能力不如神经网络,但在金融、医疗、法律等需要 “决策可追溯” 的领域,它仍是不可替代的关键技术。理解规则学习的核心逻辑(规则结构、评价指标、学习策略),是掌握 “可解释 AI” 的重要基础。(注:文档部分内容可能由 AI 生成)

2025-10-10 00:00:00 980 2

原创 从官方视频比较Autodesk Forma 与广联达 CONCETTO

软件核心标签适用团队 / 场景云端・可持续・国际生态1. 注重绿色建筑、碳足迹管控的团队(如欧美项目)2. 使用 Revit/Rhino 的国际设计团队3. 需在前期规划阶段做环境风险评估的大型项目广联达 CONCETTO本土化・快改・成本管控1. 国内中小型建筑设计团队,频繁应对客户改稿需求2. 以 CAD 为核心工具,需快速出方案、算成本的项目3. 注重 “短平快” 交付,需一键出渲染图汇报的场景。

2025-09-30 00:00:00 541

原创 从技术角度分析 “诺亚参数” 生成式设计工具

诺亚(Noah.)是杭州数字冥想建筑科技有限公司为广大建筑设计工作者们量身定制的一款简单、便捷的智能化辅助设计工具。辅助建筑师们快速、准确地完成日常设计工作中最为耗时且容易出错的评估、列举、制图等工作。大幅度提高设计效率,优化项目所需周期及成本。住宅、办公、商业是目前诺亚战斧版第一阶段开发的三大主力版块。住宅算法模块现已上线,其中成熟的内容包括:高层强排算法、多层强排算法、高低配强排算法及其他诸多辅助算法功能。每个版块独立售卖按年计费,成为诺亚同行者,可享此系列产品的永久使用权限。

2025-09-24 00:00:00 1363

原创 广联达 CONCETTO 产品与分析

综上,CONCETTO 目前仍处于产品初期阶段,虽凭借 “一体化分析 + AI 赋能” 的定位具备较好发展前景,但最终能否在市场中立足(如能否持续优化功能体验、能否适配更多用户场景),仍需时间与市场的双重检验。

2025-09-24 00:00:00 593

原创 生成式设计:多方案比选与遗传算法的技术演进与实践

回溯历史,衍生式设计的技术雏形早在十几年前便已出现。从技术内核来看,它要解决 “特定约束下自动生成建筑设计成果” 的核心需求:基于规则的算法突破了小规模问题的自动化瓶颈,而遗传算法等启发式方法则将适用范围扩展到中大型项目。但需正视的是,当前衍生式设计仍存在明显局限 —— 算法的求解效率有提升空间,能处理的问题规模也存在明确上限。从目前市面上得软件就可以看出这种状况,Forma和CONNCETTO都是方案设计阶段的工具,尚未出现可以解决施工图深化设计的衍生式或更高级的工具。

2025-09-17 00:00:00 620

原创 遗传算法属于机器学习吗?

核心结论:遗传算法(GA)本身是进化优化算法,不属于传统机器学习范畴;关系本质:两者是“互补关系”——GA擅长“优化解”,ML擅长“学习模式”,常结合使用(GA辅助ML);判断依据:若技术目标是“从数据中学习模式”,则属于ML;若目标是“寻找最优解”,则属于GA(或其他优化算法)。机器学习是“学规律”,遗传算法是“找最优”——前者是“学习”,后者是“优化”,二者不是从属关系,但常合作。

2025-09-12 00:00:00 1163

原创 MCP 和 Fuction Call 有什么不同

某品牌手机的“专属插头”:只能插该品牌的充电器,换手机就用不了;MCP= “USB-C通用插座”:不管是苹果、安卓、笔记本,只要支持USB-C协议,都能插这个插座充电。如果未来MCP成为行业标准,开发者只需按MCP封装一次工具,就能让GPT、Claude、国产模型、企业自研系统同时调用,这才是MCP和Function Call最根本的差异。

2025-09-05 00:00:00 739

原创 强化学习中的模仿学习是什么?

痛点:传统RL的奖励函数难以设计;思路:利用专家的“状态-动作轨迹”,学习“如何像专家一样行动”;方法基础:行为克隆(BC)——监督学习式逐步模仿,简单但易累积误差;进阶:逆强化学习(IRL)——反推专家奖励再用RL学习,解决分布偏移;当前主流:生成式对抗模仿学习(GAIL)——用GAN对抗博弈,隐式学习专家分布,兼顾性能与效率。通过这种方式,模仿学习在真实复杂场景中为RL的落地提供了重要解决方案,尤其适合“专家经验可量化为数据”的任务。

2025-09-04 00:00:00 817

原创 演员-评论员算法有何优点?

Actor-Critic的本质是通过“Actor执行策略、Critic评估价值”的分工协作,解决了传统强化学习“方差与偏差失衡、样本效率低、动作空间适配差、延迟奖励难处理”四大核心痛点,成为连接基础算法与工业级应用(如机器人控制、自动驾驶、推荐系统)的关键桥梁。后续几乎所有主流强化学习算法(如PPO、SAC)都是在Actor-Critic框架上的优化,足见其在强化学习领域的核心地位。

2025-09-04 00:00:00 762

原创 CAD/BIM软件产品技术深度分析文章写作计划

大家好,我在三维建模软件领域深耕多年,尤其聚焦 CAD/BIM 软件的产品设计、技术研发与架构搭建,算是积累了一些行业实践与技术思考。一直想把这些沉淀转化为有深度的内容,围绕软件核心技术、产品战略、架构创新等关键方向,和大家做更深入的交流 —— 毕竟行业的进步从来不是单打独斗,多维度的探讨才能碰撞出更多思路。后续我会根据大家的反馈,优先打磨对应主题的深度内容,和大家一起慢慢拆解行业难点、梳理技术脉络,共同在 CAD/BIM 软件领域探索更多可能。

2025-09-04 00:00:00 259

原创 最大熵强化学习相比传统强化学习,有什么缺点?

MaxEnt RL通过引入“熵目标”解决了传统RL的“探索不足、策略鲁棒性差”问题,但代价是计算更重、训练更难、对奖励更敏感、行为更难解释。其缺点并非“算法缺陷”,而是“功能取舍”的结果——在需要鲁棒性、多样性的场景(如动态环境、多任务学习)中,这些缺点可被其优势掩盖;但在需要确定性、高效率、低样本成本的场景中,传统RL仍是更优选择。

2025-09-03 00:00:00 656

原创 什么是最大熵强化学习?

熵”是信息论中衡量概率分布不确定性的指标。在MaxEnt RL中,我们关注的是策略π的熵H(π)若策略熵高:在同一状态下,智能体选择不同动作的概率更平均(如“选动作A的概率40%,选动作B的概率35%,选动作C的概率25%”),随机性强。若策略熵低:在同一状态下,智能体几乎只选某一个动作(如“选动作A的概率99%,其他动作1%”),随机性弱(接近传统RL的固定策略)。

2025-09-02 00:00:00 823

【计算机视觉】基于ControlNet的扩散模型条件控制架构:实现文本到图像生成的空间精准调控

内容概要:本文提出ControlNet,一种用于增强大型预训练文本到图像扩散模型(如Stable Diffusion)的神经网络架构,能够通过输入边缘、姿态、深度、分割图等空间条件精确控制图像生成过程。ControlNet通过复制并锁定原始模型的编码层作为强大骨干,同时引入可训练副本与“零卷积”连接,确保训练初期不引入有害噪声,防止灾难性遗忘,支持小数据集下的高效微调。该方法可在单张GPU上快速训练,并兼容多种条件输入,包括单一或组合条件,且无需修改原始模型结构即可迁移到社区模型中。实验表明ControlNet在不同数据规模下均表现鲁棒,在图像质量与条件保真度方面优于现有方法。; 适合人群:计算机视觉与深度学习领域的研究人员、AI图像生成技术开发者及对扩散模型控制机制感兴趣的技术人员。; 使用场景及目标:①实现对文本到图像生成的空间精细控制,如基于草图、人体姿态或深度图生成对应图像;②在有限数据条件下安全微调大模型,避免过拟合与知识遗忘;③支持多条件联合控制与跨模型迁移,提升实际应用灵活性。; 阅读建议:建议结合代码实现深入理解“零卷积”机制与ControlNet结构设计,重点关注消融实验与用户研究部分以评估其有效性,并尝试在不同条件输入和下游任务中复现与扩展该方法。

2025-11-04

使用OpenGL + QT 实现管线求交地操作

这份代码实现了一个基于 OpenGL 和 Qt 的三维可视化程序,用于渲染一个彩色的立方体,并支持用户通过鼠标操作来发射射线以及旋转视角。用户可以通过鼠标左键点击窗口发射射线,射线会从相机位置出发,指向点击位置在三维空间中的对应点;同时,用户按住鼠标右键拖动可以旋转视角,从而改变观察立方体的角度。

2025-03-21

Open CASCADE Technology 7.6.0用于3D建模瓶子实例教程

内容概要:本文详细介绍了利用 Open CASCADE Technology(OCCT)7.6.0 开发环境进行三维几何建模的应用实践。具体而言,通过构建瓶身模型为实例讲解如何使用 OCCT 中的基本组件完成从简单图形到复杂组合实体的各项步骤。首先定义几何形状与参数,随后创建截面并沿轴线拉伸生成实体,在此基础上进一步修饰边角添加瓶颈、螺纹特征以及内部掏空处理等一系列工艺流程都被逐步剖析。 适用人群:有经验的C++程序员或工程师,对几何建模有兴趣的技术人员。 使用场景及目标:①了解OCCT基本类及其用法;②熟悉运用C++接口操作点线面;③掌握实体变换及布尔运算;④提升解决实际工程项目问题的能力。 其他说明:提供了一种系统性的学习方法论来帮助初学者上手OCCT平台上的产品开发流程,并指出了更多深入探索的方向如咨询和支持服务网站链接。

2025-03-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除