机器学习学习笔记
文章平均质量分 94
师从吴恩达教授(Andrew Ng from Stanford University)
感谢B站up主“啥都会一点的研究生”的搬运以及字幕添加
MikeBennington
路漫漫其修远兮,吾将上下而求索
展开
-
【Machine Learning】03-Unsupervised learning
在监督学习中,如果没有选好训练集特征,运行结果通常也不会受很大影响,因为样本有监督信号,让算法找出需要被忽略的特征,或者调整特征,但对于没有标记数据的异常检测算法(无监督学习),则很难找出需要被忽略的训练集特征。 具体的实例有时可能不是0-5星的评分,而是0或1的二元分类,分别表示没有看过和看过,这样问题就变成了一个逻辑回归模型,我们可以利用之前的协同过滤算法来进行计算,判断某位用户是否会对某个没有看过的电影感兴趣,并用0或者1来表示。 上文中的两次计算,第一次给定电影特征,估计用户参数;原创 2023-10-17 17:04:37 · 723 阅读 · 0 评论 -
【Machine Learning】02-Advanced Learning Algorithms
2. Advanced Learning Algorithms2.1 Neural Network2.1.1 概述 人脑是极为发达且复杂的系统,在上世纪八十年代,人类就开始尝试对人脑的工作原理进行研究与模仿,这就催化了神经网络(neural networks)这门学科的诞生。在machine learning中谈论的神经学习,指的是“神经网络学习”,或者说是机器学习和神经网络这两个学科领域的交叉部分。 神经元是人脑中非常重要的元素,它可以接受别的神经元的输入电信号,通过处理再转化为电信号输出原创 2023-10-17 16:56:49 · 1084 阅读 · 0 评论 -
【Machine Learning】01-Supervised learning
在经典房价预测案例中,假定已获得上图中的数据,并将这些数据作为测试集进行拟合。 若选用一次多项式进行拟合,显然与趋势不同,因为当面积越来越大,房价也趋于平稳,不会像一次函数一样无限增长。我们称这样的结果为欠拟合(Underfitting)或高偏差(high bias)。 如果选用更高次项的多项式,得到的结果十分准确的拟合了数据集中的每一个训练数据,代价函数也几乎等于零。但这是一条很波动的曲线,有时当面积增加房价反而大幅下降,这显然也与实际不符。原创 2023-10-17 16:52:06 · 646 阅读 · 0 评论 -
【机器学习学习笔记】机器学习入门&监督学习
1. 机器学习入门1.1 What is Machine Learning? "Field of study that gives computers the ability to learn without being explicitly programmed. " ——Arthur Samuel (1959)亚瑟·萨缪尔:跳棋程序编写者常用机器学习算法:Supervised learning (more imp原创 2023-04-09 23:18:25 · 389 阅读 · 0 评论