- 博客(479)
- 资源 (7)
- 收藏
- 关注
原创 如何将AI生成的公式正确的复制到word中?(全网独家)
AI内容转Word\DeepSeek转Word\支持数学公式转Word\批量mermaid转高清图片到word。这里对比一下效果,右边是word可以生成的格式。在生成的内容选项中,
2026-01-31 23:28:56
359
原创 docker里面的文件没有写入权限,也无法使用sudo。docker镜像里某个文件夹没有创建文件夹权限。如何解决?
解决方法:先在docker外面给chmod 777 filename,然后再docker cp就有权限写入了。docker里面的文件没有写入权限,也无法使用sudo切换到root用户。
2026-01-27 08:37:13
37
原创 本地大模型千问思考很久,如何解决
亲测好用,但是不思考可能效果真的略差,不过能用。一劳永逸:单独发一句:以后我的问题都不要思考。本地大模型千问思考很久,如何解决。在提问最后加上:不要思考。
2026-01-27 08:36:04
21
原创 ubuntu系统如何刻录文件?(很久的问题终于解决了)
弄了很久很久,试了很多次,一直在ubuntu的台式机上如何刻录文件,今天通过尝试了多个软件,最终成功解决!这里根据自己光盘的大小,选择右下角的对应辅存的选项,我这里是4.3GB,就选择4.3GB的。3.试过brasero,也是刚开始刻录就提示刻录异常,然后弹盘。使用xburn,但是也要注意操作步骤,不然也会失败。然后将数据拖到这个界面上(或者左上角添加文件)1.中间尝试过直接刻录,但是粘贴不进去。2.试过x3b,结果也不能用。4.试过命令行工具,也失败了。然后点击右下角继续刻录。
2026-01-22 08:56:57
75
原创 Numba JIT是什么(python代码加速)
NumbaJIT是一种基于LLVM的即时编译技术,能够将Python数值计算代码(特别是NumPy风格代码)在运行时编译为本地机器码,显著提升性能。其核心机制是在首次运行时分析Python代码,生成LLVM中间表示并编译为机器码,后续调用直接执行优化后的机器码。Numba特别适合加速数值密集型循环、数组操作等计算任务,在雷达信号处理(如PDW分选)等场景中可带来数量级的性能提升。它提供CPU和GPU两种加速模式,但不适合处理Python对象或字符串等动态类型操作。相比其他加速方案,Numba具有上手简单、性
2026-01-20 14:51:42
340
原创 配置vscode的ssh离线部署,但是Stable-cmmit-id一直会后面添加个staging这个后缀将文件名修改
staging它是,不是 bug。
2026-01-19 17:33:27
583
原创 Tesla、Quadro和 GeForce是什么?—— NVIDIA 针对不同应用场景划分的 GPU 产品家族,A100 / H100、RTX A6000 / A5000、RTX 3080 / 309
NVIDIA GPU产品线主要分为三大类:Tesla(现并入DataCenterGPU)专为数据中心计算和AI训练设计,支持大显存和并行计算;Quadro(现称RTX A系列)面向专业图形工作站,注重显示精度和稳定性;GeForce为消费级产品,适合游戏和小规模科研。Tesla最适合深度学习,Quadro次之,GeForce可用于中小规模实验。在学术论文中常见"Tesla GPU"表述,实际指数据中心级计算卡。
2026-01-19 11:21:15
524
原创 Cross-Domain Contrastive Learning for Time Series Clustering论文代码复现(跨域对比学习用于时间序列聚类CDCC)
本文记录了跨域对比学习时间序列聚类算法CDCC的复现过程。主要工作包括:1)准备UCR数据集并修复数据预处理bug;2)解决了augmentations.py中因不等长数组导致的permutation函数报错问题;3)完整运行流程耗时约5分钟,在测试集上取得NMI=0.545和RI=0.786的聚类效果。代码实现了动态配置加载、算法实例化、数据读取、训练评估等功能,支持多种评估指标,通过固定随机种子保证实验可复现性。该实现依赖PyTorch等库,需要按照特定格式组织YAML配置和输入数据文件。
2026-01-19 10:21:24
565
原创 短视频平台如何将16:9照片发成竖版全屏,而不是横板
摘要:针对16:9照片发布时自动转为横板导致细节丢失的问题,可通过简单操作解决:全选图片后统一右转90度,再发布即可保持全屏显示。该方法能有效保留画面完整度,操作仅需2步(全选+旋转),适用于批量处理。(98字)
2026-01-18 18:44:08
67
原创 vscode:终端运行正常,但是用debug模式运行python项目就报错
摘要:当终端运行正常但debug模式报错ModuleNotFoundError时,可通过两种方法解决:(1)推荐方法:在项目入口文件(main.py)顶部添加代码,将项目根目录插入sys.path;(2)配置VSCode调试环境,修改.vscode/launch.json文件,设置正确的cwd和PYTHONPATH路径。问题根源在于调试时工作目录和Python路径未正确包含项目根目录,导致无法识别顶层包。两种方案均可有效解决模块导入问题。
2026-01-16 15:55:23
115
原创 如何用AI分析整个文件夹下所有脚本的功能、甚至修改
本文介绍了两种使用AI工具分析项目的方法:1)在VSCode中使用Copilot,通过添加上下文文件并选择Ask模式进行总结,或切换为Edit/Agent模式修改项目;2)将GitHub项目链接中的"github.com"替换为"deepwiki.com",即可对整个项目进行自动分析。两种方法分别适用于本地文件分析和在线项目分析场景。
2026-01-16 09:01:25
64
原创 深度聚类代码库总结
https://github.com/zhoushengisnoob/DeepClustering.git有代码的一篇论文:https://github.com/zhoushengisnoob/DeepClustering?utm_source=chatgpt.com
2026-01-15 17:09:53
36
原创 Linux服务器离线安装vscode server(2026年亲测可用)
离线环境下VSCode远程连接服务器需要手动安装VSCodeServer。方法分为两种:1.89版本前只需下载一个server文件,解压后改名为commit_id并放入~/.vscode-server/bin/目录;1.89版本后需下载server和cli两个文件,分别解压后放入~/.vscode-server/cli/servers/Stable-${commit_id}/和~/.vscode-server/目录。关键步骤是获取本地VSCode的commit_id,根据版本和系统架构下载对应安装包,并按指
2026-01-15 15:14:26
1365
原创 of 的发音?弱读最常见/əv/
最常见(弱读,口语 / 学术汇报里几乎都用这个)这仅仅是所有相关的问题之一。这是送给我的一个孩子的礼物。这是最常采用的方法之一。我们把你看作家中的一员。(美音偏 /ɑːv/)我一直把你当成自家人。牛津高阶英汉双解词典。牛津高阶英汉双解词典。牛津高阶英汉双解词典。牛津高阶英汉双解词典。
2026-01-07 17:31:20
291
原创 linux上面能对pdf注释嘛?推荐Okular,亲测好用
Okular是KDE官方推出的多功能PDF阅读器,特别适合学术论文批注和长期阅读。它支持高亮、下划线、删除线等文本批注,以及便签注释和手写批注功能,所有注释都能直接保存到PDF文件中并兼容Acrobat。安装简单,各Linux发行版均可通过包管理器安装。虽然界面风格偏KDE,但在GNOME下也能使用。设置默认打开方式后,用户可方便地进行手写注释或文字高亮操作,是处理学术文献的理想工具。
2025-12-26 08:57:54
196
原创 如何用AI分析整个项目(修改整个项目的代码)
使用vscode里面的copilot插件即可,从extensions中下载,选择agent模式,然后点击add_content,里面有上传文件夹的功能。然后就可以对整个文件夹进行分析。此外,edit模式还能直接自动修改代码,而不需要人工手动修改。
2025-12-25 17:10:38
602
原创 samba: Depends: python3 (< 3.11) 但是将要安装 3.10.6-1~22.04.1
【代码】samba: Depends: python3 (< 3.11) 但是将要安装 3.10.6-1~22.04.1。
2025-12-24 10:16:30
304
原创 两个电脑(windows和linux之间)如何快速传输文件(亲测可用,方便快捷)
摘要:本文介绍了两种实现电脑间文件共享的方法:1) 通过连接同一WiFi使两台电脑处于同一网段,然后使用系统自带的共享文件夹功能;2) 无网络时可用网线直连(接口不同需使用拓展坞)。操作步骤包括:先ping对方IP确认网络连通性,然后在文件夹属性中设置共享,另一台电脑即可在网络中访问共享文件夹。该方法适用于Windows/Linux系统间的文件传输。
2025-12-24 09:33:58
532
原创 深度聚类(Deep Clustering)与度量学习(Metric Learning)的共同点和不同点
深度聚类(Deep Clustering)与度量学习(Metric Learning)虽然在处理数据时经常“结伴而行”,但它们的底层逻辑、工作方式以及解决的问题重点有着本质的区别。为了让你更透彻地理解,我们将这两者放在一起进行深度的横向对比。
2025-12-23 09:28:55
753
原创 ElevenLabs,目前最像真人、最适合模仿学术口语的英文朗读工具/tophonetics英文添加音标和朗读功能
ElevenLabs 是目前的英文朗读工具,很多科研人员、播客和演讲者都在用。官网:👉。
2025-12-22 11:33:46
502
原创 半监督学习和元学习的区别
基于模型的:Meta-LSTM、Meta-Transformer。基于度量的:ProtoNet、Matching Net。“如何更好地利用未标注数据,弥补标注样本不足?明确区分 support / query。的情况下,提高模型在当前任务上的性能。基于优化的:MAML、Reptile。,用很少的数据就能学会一个新任务。元测试阶段:新任务,小样本快速适应。“如何让模型学会‘如何学习’?:在任务层面进行训练与泛化。训练阶段:有标注 + 无标注。元训练阶段:多个任务。
2025-12-22 11:33:27
251
原创 电脑连接手机的wifi速度很慢怎么办,手机速度正常
比如换个地方,换个手机卡,链接别人的热点,用USB共享网络等方法试试。热点设置里面,将AP频段这个有2GHz修改为5GHz。电脑连接手机的wifi速度很慢怎么办,手机速度正常。如果不行的话再考虑其他方法。
2025-12-19 16:07:25
288
原创 PolSAR Image Registration——极化合成孔径雷达(PolSAR)图像配准
本文介绍了极化合成孔径雷达(PolSAR)图像配准的概念与重要性。PolSAR通过多极化通道获取目标散射特性,图像配准则实现不同时空条件下获取图像的对齐。配准是极化特征分析、地物分类等应用的前提,否则会导致特征破坏。但PolSAR配准面临多通道统计差异、斑点噪声、几何畸变及散射机制变化等挑战。该技术对提升PolSAR数据应用价值具有关键作用。
2025-12-19 10:21:03
197
原创 如何阅读一篇论文:三遍阅读法
本文提出三遍阅读法来高效阅读学术论文:第一遍(5-10分钟)快速浏览标题、摘要、引言和结论,判断论文价值;第二遍(约1小时)重点阅读图表和关键内容,掌握核心观点;第三遍(1-5小时)深度理解并尝试"虚拟复现",批判性分析论文优缺点。这种方法既能快速筛选文献,又能深入理解重要论文,适合科研工作者采用。
2025-12-19 08:45:39
904
原创 如何搜索到最新的且有代码的论文(全网独家)
如Incremental Learning,然后左边选择时间为2024年之后的论文,打开论文之后在全文中搜索github/http关键词,看能不能找到代码链接。方法1:问AI给出近两年发表且可复现的论文(如增量学习领域)方法2:微信/知乎搜索该领域有代码可复现的论文。方法3:在谷歌学术上搜索论文关键词,
2025-12-17 09:51:46
241
原创 AI公式复制到Word是乱码?一键实现AI输出的Markdown转Word
从AI(Deepseek、豆包、Kimi、ChatGPT等)聊天窗口,点击AI回答左下角的复制按钮,不要手动复制哦,不然格式会乱。我们把复杂的流程变得极其简单,无论你懂不懂技术,都能轻松上手。一份公式清晰、排版工整的Word文档已经下载到你的电脑里了。,将你刚刚复制的内容粘贴到输入框中。
2025-12-15 22:25:38
355
原创 lib\multiprocessing\spawn.py“, line xxx, in _main self = reduction.pickle.load(from_parent) EOFError
摘要:Windows多进程报错"Can't pickle local object"的解决方案:主要因Dataset类定义在main()函数内导致无法序列化。推荐方案是将Dataset类移到main()外作为全局类(工业标准做法),可保持num_workers>0的高效数据加载;临时方案是设置num_workers=0,但会降低数据加载速度,仅适用于快速测试。
2025-12-14 23:33:56
270
原创 百度翻译、有道翻译、谷歌翻译中【有道翻译】能对重点单词进行注释
有道翻译支持重点单词注释功能,而百度翻译和谷歌翻译暂未提供该服务。这一差异化功能使有道翻译在辅助学习场景中更具优势。三家主流翻译工具的核心功能对比显示,单词注释可能成为用户选择翻译平台的重要考量因素之一。(47字)
2025-12-12 11:42:59
156
原创 表格的下一页空格删不掉怎么办?(解决表格后多出来的空白页)
摘要:删除Word文档中多余空白页的有效方法是调整回车符所在段落的字号大小。具体操作为选中回车符所在段落,将字号设置为1磅最小值,即可自动删除第二页空白页。该方法简单实用,相关操作可参考知乎专栏文章(p/663951253和p/147863420)。
2025-12-10 15:28:33
215
原创 online与见刊的区别
论文发表的两种状态:Online(在线发表)和见刊(正式出版)存在关键区别。Online阶段指论文已完成评审、编辑和校对,获得DOI号可被引用检索,但尚未分配卷期页码;见刊则表示论文被正式编入期刊某一卷期,具有固定页码,是最终版本。Online属于提前在线发表状态,而见刊标志着论文的完整出版流程结束,通常数据库会以见刊版本作为最终收录标准。
2025-12-10 10:19:42
541
原创 机载单站无源定位如何得到比较准确的结果(提供两个比较精确的交叉定位方法)
摘要:本文提出使用线性代数中的坐标变换方法精确计算飞机方位角。通过构建机体坐标系到大地坐标系(NED)的旋转矩阵,解决飞机横滚和俯仰导致的几何投影误差问题。文中给出了Python实现代码,包括角度转换、旋转矩阵构建和向量变换等步骤,最终计算出0-360度的真北方位角。该方法利用欧拉角顺序变换(Yaw-Pitch-Roll)实现坐标转换,适用于需要高精度方位计算的航空应用场景。
2025-11-21 09:51:27
81
转载 11个MDPI投稿状态详细解析
本文详细介绍了MDPI期刊投稿的11个主要稿件状态及处理流程,包括待初审、审稿中、修改稿审稿、等待决定、待修稿、编辑决定、接收/拒稿、英文校对、作者校对、重提交和格式转换等环节。每个状态的预计处理时间从1-5天到2-3周不等,并提供了超时后的处理建议。文章特别提醒作者注意校对阶段是修改格式问题的最后机会,但不可改动论文内容。该指南可帮助投稿者了解审稿进度,合理规划时间。(149字)
2025-11-20 16:11:24
1516
原创 vscode打开终端报错:无法将“xxx\anaconda\Library\shell\condabin\conda-hook.ps1”项识别为 cmdlet、函数、脚本文件或可运行程序的名称
该错误提示conda无法找到conda-hook.ps1脚本文件,原因是文件路径不正确。经检查发现D:\xxx\anaconda\Library\shell路径下缺少shell文件夹,而实际该文件夹存在于D:\xxx\anaconda目录下。将shell文件夹及其包含的conda.ps1文件移动到正确的Library路径下后,问题得到解决。这个案例说明当出现路径相关错误时,应仔细检查文件的实际存储位置,确保路径配置与系统实际目录结构一致。
2025-11-20 08:36:14
137
原创 运动单站无源定位模型(4种情况理解)和5种经典的单站运动无源定位的方法的运动精度排序,及所需的参数
摘要:本文分析了运动单站无源定位模型的四种情况,重点探讨仅测向定位的可观测性。通过图示说明,当观测站静止时无法确定目标距离和速度(图4.23a),而当观测站进行变速、变向运动时(图4.23b),从不同位置获取的多角度观测信息可消除定位歧义性。文中用车辆与行人持望远镜观察的比喻,形象解释了动态观测如何通过"投影"变化实现唯一解定位,强调观测站运动状态对定位精度的关键影响。(149字)
2025-11-19 16:42:47
253
原创 单站无源定位 (Single-station Passive Localization) 介绍
摘要:单站无源定位领域的关键研究进展包括:1)经典理论证明机动观测是必要条件(Nardone,1981);2)现代非线性滤波方法中容积卡尔曼滤波(CKF)优于EKF(Arasaratnam,2009);3)深度学习新方法利用LSTM/GRU网络直接输出目标位置(2020)或结合物理模型优化滤波器(2021);4)伪线性估计器(PLE)通过凸优化解决非线性问题(Dogancay,2012)。研究从基础理论到SOTA方法形成了完整的技术路线。(149字)
2025-11-19 16:28:42
226
原创 window中记事本如何反撤回,ctrl+shift+z不行
摘要:撤销操作后无法用Ctrl+Shift+Z重做时,可以尝试使用Ctrl+Y(Windows)或Cmd+Y(Mac)来恢复。Ctrl+Z用于撤销操作,而Ctrl+Y则用于重做被撤销的操作,这适用于大多数软件。使用前请确认当前程序是否支持该快捷键组合。
2025-11-19 16:04:03
225
python外星人项目,免费获取,含图片文件
2023-12-20
1.10.0GPU版本pytorch环境,conda安装支持cuda10.2和11.3 pip安装支持cuda10.2和11.1
2023-11-27
python3.7.2最新版下载
2019-03-05
Java冒泡排序代码
2019-03-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅