221 最大正方形-动态规划

本文介绍了一种使用动态规划解决二维矩阵中寻找只包含1的最大正方形问题的方法。通过理解动态转移公式,实现了求解过程,最终返回该正方形的面积。

题目描述:
在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

示例:
输入:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
输出: 4
方法1:动态规划
主要思路:
(1)该方法的实现比较简单,主要是能够理解动态转移公式:dp[i][j]=min(dp[i-1][j-1],min(dp[i-1][j],dp[i][j-1]))+1;其中dp[ i ][ j ]表示在以i-1,j-1处的字符为右下角时,可能组成的正方形的最大边长,则需要获得dp[i-1][j-1],dp[i-1][j],dp[i][j-1]三处中,最小值,相当于是这三处都能组成的正方行的最小值,这样这三个小的正方形叠加到一起,就是一个缺少了右下角的正方形,故加1就为当前位置的最大的正方形;

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
    	//处理特殊情形
        if(matrix.empty()||matrix[0].empty())
            return 0;
        //初始化动态数组
        int rows=matrix.size();
        int cols=matrix[0].size();
        vector<vector<int>> dp(rows+1,vector<int>(cols+1,0));
        int maxLength=0;//保存最大的边长
        for(int i=1;i<=rows;++i){
            for(int j=1;j<=cols;++j){
                if(matrix[i-1][j-1]=='1'){//当前字符为'1'时,可能作为新的正方形的右下角
                	//获得当前正方形的最大边长
                    dp[i][j]=min(dp[i-1][j-1],min(dp[i-1][j],dp[i][j-1]))+1;
                    maxLength=max(maxLength,dp[i][j]);//保存最大边长
                }
            }
        }
        return maxLength*maxLength;
    }
};
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值