题目描述:
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
方法1:
主要思路:
(1)使用两个辅助变量,一个用来统计当前连续的数组元素和(当出现负数时,重置为0),另一个存储数组中的到当前位置的最大的连续子数组的和;
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int cur_sum=0;
int max_sum=nums[0];//初始值
for(int& num:nums){
cur_sum+=num;//连续子数组的和
max_sum=max(max_sum,cur_sum);//最大的连续子数组的和
if(cur_sum<0){//小于0时,重置
cur_sum=0;
}
}
return max_sum;
}
};