剑指 Offer 42 连续子数组的最大和

题目描述:
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。

示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100

方法1:
主要思路:
(1)使用两个辅助变量,一个用来统计当前连续的数组元素和(当出现负数时,重置为0),另一个存储数组中的到当前位置的最大的连续子数组的和;

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int cur_sum=0;
        int max_sum=nums[0];//初始值
        for(int& num:nums){
            cur_sum+=num;//连续子数组的和
            max_sum=max(max_sum,cur_sum);//最大的连续子数组的和
            if(cur_sum<0){//小于0时,重置
                cur_sum=0;
            }
        }
        return max_sum;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值