646 最长数对链

题目描述:
给出 n 个数对。 在每一个数对中,第一个数字总是比第二个数字小。

现在,我们定义一种跟随关系,当且仅当 b < c 时,数对(c, d) 才可以跟在 (a, b) 后面。我们用这种形式来构造一个数对链。

给定一个对数集合,找出能够形成的最长数对链的长度。你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。

示例 :
输入: [[1,2], [2,3], [3,4]]
输出: 2
解释: 最长的数对链是 [1,2] -> [3,4]

注意:
给出数对的个数在 [1, 1000] 范围内。

方法1:
主要思路:
(1)使用贪心算法;
(2)将原数组使用第二维进行升序排序,在第二维相等的情形下,使用第一维度进行排序;
(3)然后直接遍历数组,当下一个数组的第一个元素大于当前的最大值时,可以将当前数组加入链中;

class Solution {
public:
    int findLongestChain(vector<vector<int>>& pairs) {
    	//排序
        sort(pairs.begin(),pairs.end(),[](vector<int>& lhs,vector<int>&rhs){
            return lhs[1]<rhs[1]||(lhs[1]==rhs[1]&&lhs[0]<rhs[0]);
        });
        int count=1;
        int end_num=pairs[0][1];
        //贪心统计
        for(vector<int>& vec:pairs){
            if(vec[0]>end_num){
                end_num=vec[1];
                ++count;
            }
        }
        return count;
    }
};

方法2:
主要思路:
(1)动态规划;
(2)首先将数组进行排序,声明动态数组 dp[ i ],所有初始值置为1,dp[ i ] 表示前 i 个组合下,可以形成的最长的链,则对于当前的 dp [ i ],则可能的最大值,是在当前的对的左点大于之前的第 j 个数组的 右点时,才可能进行更新,既在pairs[i][0]>pairs[j][1]时,才可能有dp[i]=max(dp[i],dp[j]+1);

class Solution {
public:
    int findLongestChain(vector<vector<int>>& pairs) {
        sort(pairs.begin(),pairs.end());//排序
        vector<int>dp(pairs.size(),1);//动态数组
      
        int max_res=0;
        //动态转移
        for(int i=1;i<dp.size();++i){
            for(int j=0;j<i;++j){
                if(pairs[i][0]>pairs[j][1]){
                    dp[i]=max(dp[i],dp[j]+1);
                }
            }
            max_res=max(max_res,dp[i]);
        }
        return max_res;
    }
};
内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值