题目描述:
给定一棵二叉树,以逆时针顺序从根开始返回其边界。边界按顺序包括左边界、叶子结点和右边界而不包括重复的结点。 (结点的值可能重复)
左边界的定义是从根到最左侧结点的路径。右边界的定义是从根到最右侧结点的路径。若根没有左子树或右子树,则根自身就是左边界或右边界。注意该定义只对输入的二叉树有效,而对子树无效。
最左侧结点的定义是:在左子树存在时总是优先访问,如果不存在左子树则访问右子树。重复以上操作,首先抵达的结点就是最左侧结点。
最右侧结点的定义方式相同,只是将左替换成右。
示例 1
输入:
输出:
[1, 3, 4, 2]
解析:
根不存在左子树,故根自身即为左边界。
叶子结点是3和4。
右边界是1,2,4。注意逆时针顺序输出需要你输出时调整右边界顺序。
以逆时针顺序无重复地排列边界,得到答案[1,3,4,2]。
示例 2
输入:
输出:
[1,2,4,7,8,9,10,6,3]
解析:
左边界是结点1,2,4。(根据定义,4是最左侧结点)
叶子结点是结点4,7,8,9,10。
右边界是结点1,3,6,10。(10是最右侧结点)
以逆时针顺序无重复地排列边界,得到答案 [1,2,4,7,8,9,10,6,3]。
方法1:
主要思路:
(1)整体思路,想将根节点压入结果中,再将左边界压入结果中,再将叶子结点压入结果中,再将右边界压入结果中;
(2)压入根节点,直接压入即可;
(3)压入左边界,使用深度遍历,直接遍历到的结点压入到结果中,但不压入叶子结点;
(4)压入叶子结点,使用先序遍历,将叶子结点压入到结果中;
(5)压入右侧边界,使用深度遍历,直接将遍历到的结点压入到结果中,但不压入叶子结点,但题目要求是逆时针压入,故这里在压入右边界前,先记录当前结果的大小,然后在压入完右侧结点之后,对右侧结点部分进行逆序处理;
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
//压入左侧边界
void add_left_boundy(TreeNode*root,vector<int>&res){
if(root==NULL||root->left==NULL){