题目描述:
给定一个有 n 个整数的数组,你需要找到满足以下条件的三元组 (i, j, k) :
0 < i, i + 1 < j, j + 1 < k < n - 1
子数组 (0, i - 1),(i + 1, j - 1),(j + 1, k - 1),(k + 1, n - 1) 的和应该相等。
这里我们定义子数组 (L, R) 表示原数组从索引为L的元素开始至索引为R的元素。
示例:
输入: [1,2,1,2,1,2,1]
输出: True
解释:
i = 1, j = 3, k = 5.
sum(0, i - 1) = sum(0, 0) = 1
sum(i + 1, j - 1) = sum(2, 2) = 1
sum(j + 1, k - 1) = sum(4, 4) = 1
sum(k + 1, n - 1) = sum(6, 6) = 1
注意:
1 <= n <= 2000。
给定数组中的元素会在 [-1,000,000, 1,000,000] 范围内。
方法1:
主要思路:
(1)先确定 j 的位置,然后再在前后两端进行判断是否存在 i 和 k ;
(2)先在前半段确定可能的 i ,既 i 将前半段分成相等的两份,并使用unordered_set 统计此时的值;
(3)再在后半段确定 k ,此时的 k 要满足能够将后半段分成相等的两份,且此时的值在前半段的unordered _set 中出现过,返回true;
(4)跳出循环,说明没有找到满足要求的 i j k,故返回false;
class Solution {
public:
bool splitArray(vector<int>& nums) {
if(nums