题目描述:
给你一个 非递减 有序整数数组 nums 。
请你建立并返回一个整数数组 result,它跟 nums 长度相同,且result[i] 等于 nums[i] 与数组中所有其他元素差的绝对值之和。
换句话说, result[i] 等于 sum(|nums[i]-nums[j]|) ,其中 0 <= j < nums.length 且 j != i (下标从 0 开始)。
示例 1:
输入:nums = [2,3,5]
输出:[4,3,5]
解释:假设数组下标从 0 开始,那么
result[0] = |2-2| + |2-3| + |2-5| = 0 + 1 + 3 = 4,
result[1] = |3-2| + |3-3| + |3-5| = 1 + 0 + 2 = 3,
result[2] = |5-2| + |5-3| + |5-5| = 3 + 2 + 0 = 5。
示例 2:
输入:nums = [1,4,6,8,10]
输出:[24,15,13,15,21]
提示:
2 <= nums.length <= 105
1 <= nums[i] <= nums[i + 1] <= 104
方法1:
主要思路:解题汇总链接
(1)先统计出原数组的前缀和;
(2)原数组是有序的,故对于绝对值的计算,就是当前值减去其前面的 值,后面的值减去当前值;
(3)故可以分别计算前面和后面的结果,相加即为当前值和其他所有值的绝对值之和;
class Solution {
public:
vector<int> getSumAbsoluteDifferences(vector<int>& nums) {
vector<int> mp(nums.size()+1, 0);//统计原数组的前缀和
for (int i = 1; i <= nums.size(); ++i) {
mp[i] = mp[i - 1] + nums[i - 1];
}
vector<int> res(nums.size(), 0);//初始化返回结果
for (int i = 0; i < nums.size(); ++i) {
int left = i * nums[i] - mp[i];//当前值前面的结果
int right = mp.back()-mp[i+1]-(nums.size() - i-1)*nums[i];//当前值后面的结果
res[i] = left + right;
}
return res;
}
};