题目描述:
中位数是有序序列最中间的那个数。如果序列的大小是偶数,则没有最中间的数;此时中位数是最中间的两个数的平均数。
例如:
[2,3,4],中位数是 3
[2,3],中位数是 (2 + 3) / 2 = 2.5
给你一个数组 nums,有一个大小为 k 的窗口从最左端滑动到最右端。窗口中有 k 个数,每次窗口向右移动 1 位。你的任务是找出每次窗口移动后得到的新窗口中元素的中位数,并输出由它们组成的数组。
示例:
给出 nums = [1,3,-1,-3,5,3,6,7],以及 k = 3。
窗口位置 中位数
[1 3 -1] -3 5 3 6 7 1
1 [3 -1 -3] 5 3 6 7 -1
1 3 [-1 -3 5] 3 6 7 -1
1 3 -1 [-3 5 3] 6 7 3
1 3 -1 -3 [5 3 6] 7 5
1 3 -1 -3 5 [3 6 7] 6
因此,返回该滑动窗口的中位数数组 [1,-1,-1,3,5,6]。
提示:
你可以假设 k 始终有效,即:k 始终小于输入的非空数组的元素个数。
与真实值误差在 10 ^ -5 以内的答案将被视作正确答案。
方法1:
主要思路:解题链接汇总
(1)直观的想,就是使用multiset存储窗口内的元素,利用multiset,维持窗口内的元素的有序性,每次取出中间位置的数,将找中位数的步骤降低log级别;
(2)更新窗口时,删除对应的数;
class Solution {
public:
vector<double> medianSlidingWindow(vector<int>& nums, int k) {
multiset<long> st;
int left=0,right=0;
while(right<k-1){//初始化窗口
st.insert(nums[right]);
++right;
}
vector<double> res;
while(right<nums.size()){
st.insert(nums[right]);//窗口的右边界
++right;
double cur_v;//找出中位数
int mid=k/2;
auto it=st.begin();
while(mid>0){
--mid;
++it;
}
if(k&1){
cur_v=*it;
}
else{
cur_v=(*it+*(--it))/2.0;
}
res.push_back(cur_v);
st.erase(st.find(nums[left]));//窗口的左边界
++left;
}
return res;
}
};