948 令牌放置

本文介绍了一种基于令牌的能量和分数管理算法。玩家通过合理选择令牌的正反面使用,以有限的初始能量换取最大化的得分。文章提供了详细的示例和一种贪心算法的解决方案,包括对令牌进行排序和逐步优化能量与分数的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:
你的初始 能量 为 P,初始 分数 为 0,只有一包令牌 tokens 。其中 tokens[i] 是第 i 个令牌的值(下标从 0 开始)。
令牌可能的两种使用方法如下:
如果你至少有 token[i] 点 能量 ,可以将令牌 i 置为正面朝上,失去 token[i] 点 能量 ,并得到 1 分 。
如果我们至少有 1 分 ,可以将令牌 i 置为反面朝上,获得 token[i] 点 能量 ,并失去 1 分 。
每个令牌 最多 只能使用一次,使用 顺序不限 ,不需 使用所有令牌。
在使用任意数量的令牌后,返回我们可以得到的最大 分数 。

示例 1:
输入:tokens = [100], P = 50
输出:0
解释:无法使用唯一的令牌,因为能量和分数都太少了。

示例 2:
输入:tokens = [100,200], P = 150
输出:1
解释:令牌 0 正面朝上,能量变为 50,分数变为 1 。不必使用令牌 1 ,因为你无法使用它来提高分数。

示例 3:
输入:tokens = [100,200,300,400], P = 200
输出:2
解释:按下面顺序使用令牌可以得到 2 分:

  1. 令牌 0 正面朝上,能量变为 100 ,分数变为 1
  2. 令牌 3 正面朝下,能量变为 500 ,分数变为 0
  3. 令牌 1 正面朝上,能量变为 300 ,分数变为 1
  4. 令牌 2 正面朝上,能量变为 0 ,分数变为 2

提示:
0 <= tokens.length <= 1000
0 <= tokens[i], P < 104

方法1:
主要思路:解题链接汇总
(1)贪心;
(2)先将原数组进行升序排序;
(3)然后尽量的加分;
(4)接着在可能通过减分来获取更大能量的前提下,通过减分获得更大的能量;

class Solution {
public:
    int bagOfTokensScore(vector<int>& tokens, int P) {
        sort(tokens.begin(),tokens.end());
        int left=0,right=tokens.size()-1;
        int res=0;
        while(left<=right){
            while(left<=right&&tokens[left]<=P){//尽量的加分
                ++res;
                P-=tokens[left];
                ++left;
            }
            if(left<right&&tokens[right]+P>=tokens[left]&&res>0){//能够通过减分,获得更大的能量,用来后面的可能的加分
                --res;
                P+=tokens[right];
                --right;
            }else{//否则,直接跳出循环
                break;
            }
        }
        return res;
    }
};

//go语言实现

func bagOfTokensScore(tokens []int, P int) int {
    sort.Ints(tokens)
    left:=0
    right:=len(tokens)-1
    res:=0
    for left<=right {
        for left<=right&&tokens[left]<= P {
            res++
            P-=tokens[left]
            left++
        }
        if left<right&&tokens[right]+P>=tokens[left]&&res>0 {
            res--
            P+=tokens[right]
            right--
        }else {
            break
        }
    }
    return res
}
令牌桶算法是一种限流算法,它可以控制某个服务或接口的并发访问数量,防止系统被过多的请求占用,导致系统负载过高。下面是Java实现令牌桶算法的示例代码: ``` public class TokenBucket { private long capacity; // 桶的容量 private long rate; // 令牌放置速度 private long tokens; // 当前令牌数量 private long lastRefillTime; // 上次放置令牌的时间 public TokenBucket(long capacity, long rate) { this.capacity = capacity; this.rate = rate; this.tokens = capacity; this.lastRefillTime = System.currentTimeMillis(); } /** * 尝试获取令牌 * @return 是否获取到令牌 */ public synchronized boolean tryAcquire() { refill(); if (tokens > 0) { tokens--; return true; } return false; } /** * 放置令牌 */ private void refill() { long now = System.currentTimeMillis(); if (tokens < capacity) { long tokensToAdd = (now - lastRefillTime) * rate / 1000; tokens = Math.min(tokens + tokensToAdd, capacity); } lastRefillTime = now; } } ``` 在这个示例中,令牌桶算法的核心在于 `tryAcquire()` 方法,它用于尝试获取令牌。在这个方法中,我们首先调用 `refill()` 方法,用于放置令牌。然后判断桶中是否有令牌,如果有,就将令牌数量减一,并返回获取到令牌;否则返回获取不到令牌放置令牌的方法 `refill()` 会计算两次放置令牌之间的时间差,根据时间差和令牌放置速度计算出应该放置令牌数量。如果桶中令牌数量小于容量,就将放置令牌数量和当前令牌数量相加,但不超过桶的容量。这样就可以保证令牌桶中的令牌数量不会超过容量。 使用令牌桶算法可以有效地限制系统的并发访问数量,避免系统负载过高导致服务不稳定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值