1913 两个数对之间的最大乘积差

本文介绍了一种求最大乘积差的算法问题,通过两种方法实现:一是对数组进行排序,二是仅遍历一次数组找出两个最大值和两个最小值,提供了C++和Go语言的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:
两个数对 (a, b) 和 (c, d) 之间的 乘积差 定义为 (a * b) - (c * d) 。
例如,(5, 6) 和 (2, 7) 之间的乘积差是 (5 * 6) - (2 * 7) = 16 。
给你一个整数数组 nums ,选出四个 不同的 下标 w、x、y 和 z ,使数对 (nums[w], nums[x]) 和 (nums[y], nums[z]) 之间的 乘积差 取到 最大值 。
返回以这种方式取得的乘积差中的 最大值 。

示例 1:
输入:nums = [5,6,2,7,4]
输出:34
解释:可以选出下标为 1 和 3 的元素构成第一个数对 (6, 7) 以及下标 2 和 4 构成第二个数对 (2, 4)
乘积差是 (6 * 7) - (2 * 4) = 34

示例 2:
输入:nums = [4,2,5,9,7,4,8]
输出:64
解释:可以选出下标为 3 和 6 的元素构成第一个数对 (9, 8) 以及下标 1 和 5 构成第二个数对 (2, 4)
乘积差是 (9 * 8) - (2 * 4) = 64

提示:
4 <= nums.length <= 104
1 <= nums[i] <= 104

方法1:
主要思路:解题链接汇总
(1)直接对数组进行排序,然后用最大的两个数字乘积减去最小的两个数字的乘积;

class Solution {
public:
    int maxProductDifference(vector<int>& nums) {
        sort(nums.begin(),nums.end());
        return nums[nums.size()-1]*nums[nums.size()-2]-nums[0]*nums[1];
    }
};

go语言实现

func maxProductDifference(nums []int) int {
    sort.Ints(nums)
    return nums[len(nums)-1]*nums[len(nums)-2]-nums[0]*nums[1]
}

方法2:
主要思路:解题链接汇总
(1)方法1中,对数据进行整体排序,耗时耗内存,可以直接只遍历一边,找出两个最大值和两个最小值即可;

class Solution {
public:
    int maxProductDifference(vector<int>& nums) {
        int max_1=0,max_2=0,min_1=100000,min_2=100000;
        for(int n:nums){
            if(n>max_1){
                max_2=max_1;
                max_1=n;
            }else if(n>max_2){
                max_2=n;
            }

            if(n<min_1){
                min_2=min_1;
                min_1=n;
            }else if(n<min_2){
                min_2=n;
            }
        }
        //cout<<max_1<<".  "<<max_2<<". "<<min_1<<". "<<min_2<<endl;
        return max_1*max_2-min_1*min_2;
    }
};

go语言实现

func maxProductDifference(nums []int) int {
    var(
        max_1=0 
        max_2=0 
        min_1=100000 
        min_2=100000 
    )
    for _,n:=range nums {
        if n>max_1 {
            max_2=max_1
            max_1=n
        }else if n>max_2 {
            max_2=n
        }

        if n<min_1 {
            min_2=min_1
            min_1=n
        }else if n<min_2 {
            min_2=n
        }
        //fmt.Println(n)
    }
    return max_1*max_2-min_1*min_2
}
内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值