【论文笔记】Future Frame Prediction for Anomaly Detection – A New Baseline

基于未来帧预测的异常检测 CVPR2018
代码https://github.com/StevenLiuWen/ano_pred_cvpr2018

大部分现有方法
通过最小化训练数据的重构误差,这并不能保证对异常事件有更大的重构误差。

现有方法分类

  1. 基于手工特性的方法
  2. 基于深度学习的方法:通常用自动编码器的方式学习深度神经网络,然后用小的重构误差来重建正常事件

作者观点
几乎所有基于训练数据重构的方法都不能保证异常事件的发现

工作

  1. 提出在视频预测框架内解决异常检测问题,这是第一个利用预测的未来框架
  2. 除了常用的外观(空间)约束强度和梯度,我还引入运动(时间)之间的视频预测执行光流约束预测帧
  3. 未来帧的预测与本身的差异决定了未来帧的预测是正常还是不正常

网络架构
GAN 生成对抗网络
U-Net 预测下一帧的生成器
Flownet 计算光流的预训练网络

网络结构图
在这里插入图片描述

LOSS:
intensity loss:
在这里插入图片描述
gradient loss:
在这里插入图片描述
optical flow loss:
在这里插入图片描述

目标函数
在这里插入图片描述
训练网络

  1. 将所有帧中像素的强度归一化为[- 1,1]
  2. 将每帧的大小调整为256×256
  3. 设t = 4,随机剪辑5个序列帧
  4. 采用随机梯度下降法进行参数优化
  5. mini-batch size为4
  6. 对于灰度数据集,Generator和Discriminator的学习率分别设置为0.0001和0.00001
  7. 而对于颜色尺度数据集,Generator和Discriminator的学习率分别从0.0002和0.00002开始
  8. λint, λgd, λopand λadv 将它们分别设置为1.0、2.0和0.05

测试
峰值信噪比:某一帧的PSNR越高,越可能是正常在这里插入图片描述
计算完每个测试视频的每一帧PSNR后,归一化到[0,1],按下式计算每一帧的规则分数:
在这里插入图片描述
根据一个帧的分数S(t)来预测其是否正常,可以设置一个阈值来区分规则或不规则的帧

数据集

  1. CUHK Avenue :包含16个训练视频和21个测试视频,共47个异常事件,包括投掷物体,游荡,奔跑。人的大小可能会因为相机的位置和角度而改变。
  2. UCSD Pedestrian :包含行人1 (Ped1)和UCSD行人2 (Ped2)。Ped1包括34个训练视频和36个测试视频,其中包含40个不规则事件。所有这些异常案例都是关于自行车、汽车等交通工具的。Ped2包含16个训练视频和12个带有12个异常事件的测试视频。Ped2对异常的定义与Ped1相同。通常分别用不同的方法对这两部分进行评价
  3. ShanghaiTech Campus :是一个非常具有挑战性的异常检测数据集。包含330个训练视频和107个测试视频,其中有130个异常事件。共13幅景,异常类型多样。按照[24]中使用的设置,我们在所有场景上训练模型。
  4. toy

评价指标
AUC (AUC值越高,异常检测性能越好)

框架:TensorFlow
平均运行时间:25fps 每秒传输帧数

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值