【论文阅读】一种端到端的对抗生成式视频数字水印算法

该文提出了一种端到端的对抗生成式视频盲水印算法,利用编码器和解码器进行水印的嵌入与提取。通过对抗训练,确保水印在遭受几何和信号攻击时保持鲁棒性。实验表明,该算法能有效抵抗缩放、平移、裁剪、噪声、旋转等多种攻击,并且对时间同步攻击也有抵抗力。然而,它在旋转范围和特定类型的噪声攻击方面仍有局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2021.07中国科技论文

【摘要】提出了一种端到端的对抗生成式视频盲水印嵌入提取算法。该算法主要由编码器和解码器组成,编码器用于生成包含水印信息的视频,解码器用于提取视频中所包含的水印信息。不同于传统的基于频域或空域的视频水印方法,用端到端的训练方式的同时优化编码器和解码器网络。在编码器训练过程中模拟不同的信号和几何攻击类型,生成对抗样本,优化整个网络,以保证所生成水印样本的不可感知性和鲁棒性。实验结果表明:该算法对缩放、平移、裁剪等几何类攻击和压缩、噪声等信号类攻击都具有较强的鲁棒性;同时,该算法独立地训练每一个关键帧,因此还可以抵抗视频中的时间同步攻击。

算法主要包含编码器和解码器 2 部分。
编码器根据 Goodfellow 等[1 6]提出的快速递度符号法(fastgradient sign method,FGSM)为视频关键帧 X 添加扰动p ,生成对抗性样本 X’,ε为扰动强度,取值范围为[0,1],ε越大,扰动越明显,在降低模型精度方面越有效,但同时原始图像的改变也越容易被人眼察觉。
解码器 D 由 1 个深度神经网络构成,将对抗性样本解码为与水印W

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一捏捏白桃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值