2021.07中国科技论文
【摘要】提出了一种端到端的对抗生成式视频盲水印嵌入提取算法。该算法主要由编码器和解码器组成,编码器用于生成包含水印信息的视频,解码器用于提取视频中所包含的水印信息。不同于传统的基于频域或空域的视频水印方法,用端到端的训练方式的同时优化编码器和解码器网络。在编码器训练过程中模拟不同的信号和几何攻击类型,生成对抗样本,优化整个网络,以保证所生成水印样本的不可感知性和鲁棒性。实验结果表明:该算法对缩放、平移、裁剪等几何类攻击和压缩、噪声等信号类攻击都具有较强的鲁棒性;同时,该算法独立地训练每一个关键帧,因此还可以抵抗视频中的时间同步攻击。
算法主要包含编码器和解码器 2 部分。
编码器根据 Goodfellow 等[1 6]提出的快速递度符号法(fastgradient sign method,FGSM)为视频关键帧 X 添加扰动p ,生成对抗性样本 X’,ε为扰动强度,取值范围为[0,1],ε越大,扰动越明显,在降低模型精度方面越有效,但同时原始图像的改变也越容易被人眼察觉。
解码器 D 由 1 个深度神经网络构成,将对抗性样本解码为与水印W