Codeforces1263 E. Editor(线段树维护括号序列前缀)

本文介绍了一种使用线段树数据结构解决括号序列合法性判断及最大嵌套次数计算的方法。通过将括号转化为数值,利用线段树维护前缀和、前缀最大值和最小值,实现序列修改后的快速判断与更新。适用于动态括号序列的实时分析。
题意:

在这里插入图片描述

输入格式:

在这里插入图片描述

解法:
将左括号视为1,右括号视为1,其他字符视为0,
合法括号序列的所有前缀和一定都>=0,且最后=0,

那么问题变为:
可以对括号序列进行单点修改操作,要求判断每次操作之后是否是合法括号序列.
同时求出最大嵌套次数.

因为有序列修改操作,所以上线段树,
每个节点记录前缀和,维护前缀和最小值就可以判断是否合法.
最大嵌套次数其实就是所有前缀和中的最大值,因此再维护一个最大值.
判断最后是否=0,直接用区间和就行了,

综上:
1.区间和
2.前缀最大值
3.前缀最小值
维护前缀最大值和最小值有一些细节,详见代码中的pushup
code:
#include<bits/stdc++.h>
using namespace std;
const int maxm=2e6+5;
struct Node{
    int a[maxm<<2];//区间和(用来求整个序列的和)
    int ma[maxm<<2];//前缀最大值
    int mi[maxm<<2];//前缀最小值
    void pushup(int node){
        a[node]=a[node*2]+a[node*2+1];
        mi[node]=min(mi[node*2],mi[node*2+1]+a[node*2]);//右半部最小值加上左半部前缀和
        ma[node]=max(ma[node*2],ma[node*2+1]+a[node*2]);//右半部最小值加上左半部前缀和
    }
    void update(int x,int val,int l,int r,int node){
        if(l==r){
            mi[node]=ma[node]=a[node]=val;
            return ;
        }
        int mid=(l+r)/2;
        if(x<=mid)update(x,val,l,mid,node*2);
        else update(x,val,mid+1,r,node*2+1);
        pushup(node);
    }
}t;
char s[maxm];
signed main(){
    int n;cin>>n;
    int cur=1;
    scanf("%s",s+1);
    for(int i=1;i<=n;i++){
        if(s[i]=='L')cur=max(1,cur-1);
        else if(s[i]=='R')cur++;
        else if(s[i]=='('||s[i]==')'){
            if(s[i]=='('){
                t.update(cur,1,1,n,1);
            }else{
                t.update(cur,-1,1,n,1);
            }
        }else{
            t.update(cur,0,1,n,1);
        }
        if(t.mi[1]<0||t.a[1]!=0){
            cout<<-1<<' ';
        }else{
            cout<<t.ma[1]<<' ';
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值